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Abstract

Political rallies constitute a large part of electoral campaigning in the U.S. and in

modern democracies since the 19th century and remain a salient politico-economic

phenomenon today. This paper accounts for candidates’ strategic decisions to rally as

a finite-horizon dynamic game of electoral competition and applies it to structurally

estimate rally spatial and temporal choices by candidates. For the 2012 and 2016 U.S.

presidential elections, we show that rallies substantially increase poll margin leads in

targeted constituencies over non-rallying opponents and trigger systematic dynamic

responses by opponents. In terms of magnitudes, rallies by presidential candidates are

more persuasive than television ads, and estimates of the gross effect show that Presi-

dent Trump’s rallies were in fact electorally pivotal. Instead, rallies by all other candi-

dates did not change their win probability. Counterfactual policy experiments reveal

that the effects of short-term campaign silences (i.e., electoral blackouts) are limited

since candidates can time their rallies and gain sufficient support from the electorate

before campaign silences begin.
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1 Introduction

Among all methods of persuasion used by politicians, few are as old as political rallies. Their

origin can be traced back to oratory and rhetoric in ancient democracies.1 However, it was

only in the late 19th century that political rallies were first used as an electioneering tool

in a large-scale election. William Jennings Bryan used the railway network to travel 18,000

miles across the U.S. to give speeches and make other appearances to the public in 1896

(Buggle and Vlachos, 2022; Bryan, 1909). Harry Truman and Thomas Dewey later utilized

this practice in their 1948 U.S. presidential campaigns (Heersink and Peterson, 2017; Don-

aldson, 1999).

In the internet age, Donald Trump’s rallies had an average attendance of 5,505 during

the 2016 fall campaign.2 Nine of these rallies had more than 10,000 attendees. In the fall

campaigns of 2012 and 2016, political rallies constituted 44.5%3 of all campaign activities

involving presidential candidates. Fundraisers followed at 17.4%. Political rallies are also

prevalent in the developing world. For instance, a rally in the Indian city of Kolkata in

South Asia had half a million attendees (Al Jazeera, 2019). In Tanzania, rallies are a more

commonly used campaigning instrument than canvassing (Paget, 2019). In Latin America,

specifically Ecuador and Argentina, rallies form essential features of campaigns (De la Torre

and Conaghan, 2009; Szwarcberg, 2012).

Even though rallies are a favored campaigning instrument and a direct form of political

communication, systemic evidence on their importance is limited. The lack of evidence

on political rallies dramatically contrasts with the work on the efficacy of political advertis-

ing (Iaryczower et al., 2022; Spenkuch et al., 2018; Gordon and Hartmann, 2013; Hill et al.,

2013; Gerber et al., 2011), strategic advertising allocations (Erikson and Palfrey, 2000; Gor-

don and Hartmann, 2016; Snyder, 1989), and also dynamic inter and intra-electoral spend-

1See van der Blom (2016) for details on contios, informal public meetings where Roman magistrates ad-

dressed the people. See Johnstone and Graff (2018) for details on bouleutêria, auditoriums dedicated to ora-

torical performances.
2This figure is calculated using news reports on individual rallies from multiple news providers. Complete

details on the news sources for each of Trump’s rally are available upon request.
3I used candidate calendars made available by Appleman (2012, 2016) to calculate this figure.
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ing (Acharya et al., 2022; de Roos and Sarafidis, 2018; Kawai and Sunada, 2022). Empirical

work on political rallies has proven challenging due to endogenous rally decisions, mea-

surement error, candidate-level heterogeneity, and small sample sizes. These concerns are

complex to address.4 Theoretical work is challenging due to multiple equilibria associated

with such discrete action games.

This paper advances the study of political rallies on four fronts. First, it introduces a

finite-horizon dynamic game in which presidential candidates decide when and where to

hold rallies while state-level popularity decays geometrically over time. Second, estimating

the model with 2012 and 2016 U.S. data shows that a single rally shifts a state’s poll margin

by about 0.08 percentage points and that the effect decays at roughly 28% per week. Third,

the estimates imply that rallies raised Donald Trump’s Electoral-College win probability by

33% in 2016 and led Obama and Clinton to schedule about a dozen extra rallies in response

to their opponents. Fourth, counterfactual simulations reveal that campaign-silence peri-

ods of four days or fewer have negligible impact, whereas seemingly non-binding caps on

rally counts still curb campaigning because candidates optimally reserve rallies for future

contingencies.

The central element underlying these contributions is a finite-horizon dynamic game of

perfect information. In this game, office-seeking candidates are subject to electoral com-

petition while facing regional differences and dynamic uncertainty in their popularity. Dy-

namic uncertainty accommodates popularity shocks, i.e., unforeseen circumstances in elec-

toral races that lead to a candidate jumping ahead of or falling behind his opponent. Re-

gional differences address state-specific factors, such as a state’s natural inclination towards

a party or a regional popularity shock.

In this model, a candidate aims to remain popular in as many states as possible on elec-

tion day, earning a payoff proportional to each state’s electoral college votes. Rallies boost

4For instance, Shaw and Gimpel (2012) randomized a gubernatorial candidate’s visit locations in Texas but

not the opponent’s visit locations. More recently, Snyder and Yousaf (2020) did an event study at the media

market level by using Cooperative Election Study surveys. The authors found that Trump was more effective

than his opponents in gaining support through political rallies. Due to a low number of respondents in CES

surveys at the day×media market level, their measures of intention to vote for a candidate carry additional

noise, thereby increasing the underlying variance, which carries over into their estimates. Moreover, the stable

unit treatment value assumption (SUTVA) is harder to maintain at media market-level analysis as there can be

geographical spillovers.
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local popularity, which evolves as an AR(1) process to capture the decay of campaign ef-

fects. The autocorrelation parameter, referred to as persistence in popularity, governs the

decay of campaign effects and captures the urgency with which candidates increase their

campaign activity over time.5 Rallies are costly, and these costs vary across candidates and

states. Candidates are assumed to move in a stochastic order, with equal probabilities of

being first or second movers, eliminating any ex-ante advantage. This imposes a perfect in-

formation structure on the game, enabling a unique solution for rally decision probabilities

via backward induction.

One key element of the model is that candidates can schedule rallies immediately, rather

than committing to them in advance. This distinction hinges on whether campaign sched-

ules allow last-minute revisions or are rigid. I provide two pieces of supporting evidence for

the assumption that candidates retain such flexibility. First, I document a non-exhaustive

list of last-minute cancellations, additions, and rescheduling of rallies, suggesting that rally

schedules are not binding. Second, a model selection test compares the main model to an

alternative in which candidates make rally decisions one week in advance. While the pa-

rameter estimates are similar, the main model performs significantly better in 2012 and is

preferred overall when combining results from both years.6 These findings demonstrate that

assuming rally decisions are made shortly before they occur is both credible and does not

produce misleading conclusions.

The model sharpens our understanding of how rally effectiveness can be identified in the

data. The identification problem at the core of most of the reduced-form literature is that

the estimator of rally effectiveness may be biased downwards because candidates may be

more likely to rally in states where they need to boost their popularity. This downward bias

would make rallies appear ineffective, which is a common finding in this literature. On the

other hand, in this game, factors like the contemporaneous rally decisions of opponents, net

popularity gains due to candidates’ past choices, time to the election, and the relative popu-

larity of candidates across the different states all enter into the rally decisions of candidates.

These factors shape the expected benefit of holding a rally in a given state at a given time,

thereby providing one with the required identifying variation.

For my empirical application, I combine two data sources. Rally dates and locations

5See Acharya et al. (2022) for a similar pattern in campaign spending.
6For 2016, the difference in average log-likelihood between the two models is not statistically significant.
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come from the candidate calendars compiled by Appleman (2012, 2016), and daily state-

level poll margins are taken from FiveThirtyEight’s daily polling averages. These data reveal

three systematic patterns that shape the model. First, the average number of events per

day rises sharply as election day draws near. Second, rallies are poll-contingent: candidates

disproportionately visit states where the margin is close or they are trailing—that is, where

competition is “neck and neck.” Third, conditional on competitiveness, rallies concentrate

in high-electoral-vote states; large but safe states draw few events.

I estimate the model using a likelihood approach that leverages the Markov structure im-

plied by equilibrium behavior. To ensure computational tractability, I estimate the model by

grouping 12 swing states into four groups. Using Monte Carlo experiments, I show that ex-

cluding stronghold states introduces negligible bias, and that grouping swing states yields

conservative estimates of rally effectiveness. This attenuation arises as rally impacts are

averaged over a larger population in which a smaller share is directly affected, leading to

smaller but directionally consistent counterfactual effects and reducing the risk of overstat-

ing rally effectiveness. I also test robustness across three alternative groupings.

The resulting estimates reveal sizable and consistent rally effects across candidates and

years. Trump’s rallies lifted his state poll margin by 0.084 pp, while Clinton’s added 0.075 pp;

in 2012, Romney gained 0.10 pp and Obama 0.04 pp.7 In persuasion terms, a single rally

dwarfs a TV advertisement: a Trump rally persuades 0.168% of persuadable voters versus

0.01% for a Republican television spot,8 so roughly 17 ads would be needed to match one

MAGA event.

The estimated persistence parameter implies a weekly decay rate of about 28%, which lies

between the estimates of Gerber et al. (2011) and Acharya et al. (2022). This is broadly con-

sistent with the literature and unlikely to reflect artifacts from polling frequency or FiveThir-

tyEight’s weighting scheme. To further validate this, I re-estimate the model using data from

the final 50 days of the campaign—when polling frequency is more than three times higher

than in the preceding 50 days—and also using raw poll averages. In both cases, I find no

significant change in the estimated decay rate.

Given the sizable persuasive effect of a single rally, I turn to counterfactual experiments

7Poll margins are measured in percentage points (pp).
8Persuasion rates denote the share of persuadable voters converted; ad figure from Spenkuch and Toniatti

(2018).
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that quantify rallies’ overall electoral impact and strategic use. The first estimates the cu-

mulative effect of rallies, noting that while candidates hold multiple rallies per state, each

decays over time—creating a tension between frequency and diminishing effects. Compar-

ing scenarios with (i) no rallies and (ii) only one candidate rallies, I find that Trump’s rallies

raised his win probability by 33%, while other candidates saw little change. The second

experiment isolates strategic behavior by comparing scenarios where (i) both candidates

rally—strategic interaction is present—and (ii) only one does—no interaction. I find that

Obama and Clinton strategically responded to their opponents by holding 12 and 13 more

rallies, respectively; Romney showed no response, while Trump held 3.5 fewer.

Many countries enforce campaign silence periods of varying lengths—e.g., one day in

France (Pickles, 1960) and two or more days in Cyprus, Indonesia, and Brazil (Knews, 2022;

IFES, 2012; Globo, 2020). However, it remains unclear whether such laws effectively reduce

the influence of campaigning on election outcomes. I find that short silences (≤ 4 days)

have little impact, as they do not provide sufficient time for rally effects to decay. I also

examine spending limits by capping the total number of rallies, assuming equal monetary

costs across candidates and years.9 Even limits that exceed the observed number of ral-

lies (e.g., 110) can reduce overall campaigning and significantly affect outcomes.10 This is

because candidates optimally reserve rallies for potential future contingencies, a behavior

that does not arise in static models.

This paper makes contributions to two bodies of literature. Firstly, the model contributes

to the literature on political campaigning (Kawai and Sunada, 2022; Erikson and Palfrey,

2000; de Roos and Sarafidis, 2018; Meirowitz, 2008; Polborn and Yi, 2006; Garcia-Jimeno

and Yildirim, 2017; Gul and Pesendorfer, 2012; Strömberg, 2008) by constructing a dynamic

framework where candidates choose when and where to hold a rally. Strömberg (2008) stud-

ies campaign state visits and builds a model where candidates allocate time across states,

but his model is static, has identical strategies, and does not incorporate decay. I provide

a dynamic model with candidate-specific strategies where campaign effects decay. Iaryc-

zower et al. (2022) model dynamics of an incumbent senator’s advertising and platform

choices contingent on their lead in the polls. The authors do not model the opponent’s

problem and focus on incumbent senators. In this paper, I model the dynamic electoral

9Cost parameters in the model reflect the opportunity cost of holding a rally.
10“Seemingly nonbinding limits” refer to caps that are higher than the number of rallies actually held.
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competition between two office seeking candidates.

Acharya et al. (2022) study political spending within an election and identify candidates’

perceived decay rate associated with campaigning. However, the authors characterize op-

timal spending ratios rather than candidate-specific spending levels, while I use a perfect

information setup that allows one to study candidate-specific strategies. Kawai and Sunada

(2022) study spending across elections, whereas I study rally decisions within an election.

This paper also contributes to the literature on the effectiveness of political campaign-

ing events (Wood, 2016; Shaw, 1999; Shaw and Roberts, 2000; Shaw and Gimpel, 2012). I

contribute to this literature by estimating the effects of rallies on poll margins and on the

electoral outcomes. The literature finds mixed evidence on the effects of rallies and related

events on polls, vote shares, and other outcomes of interest. Moreover, these estimates also

vary with the identification strategy used by the authors. In the past, authors have ignored

the heterogeneity of rally effectiveness across candidates and attempted to provide an av-

erage estimate. Recently, Snyder and Yousaf (2020) studied political rallies and showed that

Trump significantly affected intention to vote, while other non-populist candidates did not.

Whereas the authors in this study used a difference-in-differences specification at the media

market level to address the selection bias,11 I directly address the selection bias by model-

ing these rally decisions. Grosjean et al. (2022) found that Trump rallies led to more racial

discrimination by police officers. The effect is not explained by changed behavior of drivers,

as it is stronger when officers were racially biased, and when Trump directly or indirectly

mentioned racial issues.

The paper proceeds as follows, Section 2 discusses the model, equilibrium, and compar-

ative statics. Section 3 discusses data sources, summary statistics, and empirical patterns.

Section 4 discusses parameterization and the estimation procedure. Section 5 discusses the

estimates, persuasion rates, in-sample model fit, and out-of-sample model fit. Section 6

discusses robustness tests. Section 7 discusses counterfactual experiments. Section 8 con-

cludes.
11The assumption of SUTVA is more challenging to justify at this geographic level due to spontaneous news

coverage of rallies in geographically closer media markets.
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2 Model

The model analyzes the interaction between presidential candidate rally decisions and their

popularity levels. In this model, we have K states, T + 1 periods, and two candidates, {R,D}.

I assume one popularity measure per state that holds information on the relative popularity

of candidates. This popularity measure can take values inR. Here popularity is interpreted

as R’s poll margin lead over D. Naturally, if the popularity measure is positive, then R is

leading in the polls in the state. If negative, then D is leading the polls. Popularity follows

an AR(1) process. The game is played over T periods, and a sequential-move stage game

is played in each period. In this stage game, the order of play between the candidates is

random. Each candidate, at their turn, must choose at most one state out of K states. In the

election period T + 1, every state chooses the popular candidate as the winner.

A key feature of the model is the joint treatment of both candidates’ rally decisions. Rally

choices are inherently interdependent: each candidate’s action reflects not only their own

popularity and costs but also their opponent’s current behavior and anticipated response.

Ignoring these interactions would introduce endogeneity, as opponent actions are corre-

lated with a candidate’s decision to rally. Structural models of political competition—particularly

those studying dynamic campaign strategies and advertising—routinely incorporate such

strategic dependencies to ensure credible estimation of behavioral primitives.

2.1 Preliminary

The set of states is given by K = {1, 2, . . . ,K}. Let i ∈ {R,D} and t ∈ {1, 2, . . . ,T} be an

arbitrary candidate and period, respectively. A candidate can hold at most one rally in a state

and pay a cost ci if a rally is held. A rally decision is denoted by aikt. State-level popularity is

denoted by pkt, and the next-period popularity, pk,t+1, follows an AR(1):

pk,t+1 = αRaRk,t + αDaDk,t + ρpkt + δk + νk,t+1, (2.1)

where αi is i’s effectiveness in influencing popularity, the parameter ρ is the persistence in

popularity, νk,t is a popularity shock, and δk is a state-specific drift.12 I assume the following.

12Readers may wonder whether OLS applied to Equation (2.1) could consistently estimate rally effects. This

concern is addressed in Section 4.2. Briefly, the structural model operates at a higher frequency than the ob-
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Nature

Figure 1: Stage Game

The stage game for each period t = 1, 2, . . . ,T is depicted in this figure. In each period, both candidates

observe their popularity level pt. Then nature chooses a first mover and a second mover. Then cost

shocks for the first mover are drawn and are observed by both candidates. The first mover decides

where to rally. Then cost shocks for the second mover are drawn from the distribution and observed by

both candidates. The second mover makes their rally decision and then the game proceeds to period

t + 1.

Assumption 2.1 (Popularity Shocks) Popularity shocks
(
ν1,t, ν2,t, . . . , νK,t

)
are distributed ac-

cording to a multivariate normal distribution.

(ν1,t, ν2,t, . . . , νK,t) ∼ N(0, σ2
νIK). (2.2)

Where σ2
νIK is a positive definite matrix and σν is the volatility in popularity.13 Let the den-

sity of popularity in period t + 1 given period t primitives be denoted by f (pt+1|aR,t, aD,t, pt).

served polling data, which induces correlation between daily rally counts and unobserved within-day popu-

larity shocks. OLS is inconsistent—even though rally choices in each sub-period are made before shocks are

realized—because at the daily level, the total number of rallies is mechanically correlated with the sum of un-

observed shocks over the day. As a result, OLS regressors correlate with the composite error term. In contrast,

the likelihood approach accommodates this structure by integrating over latent sub-daily popularity states

using a Kalman-filter-based setup. See Section 4.2, Section E.1, and Table A4 for details.
13In the baseline model, I assume that popularity shocks are normally distributed and are uncorrelated

across states. This assumption is relaxed in Section 6, where two distinct types of correlations between states

are allowed.
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Note that this density takes the form of the normal pdf under Assumption 2.1. The popular-

ity evolution equation 2.1 and Assumption 2.1 can also be statistically founded by consider-

ing a mean-reverting process similar to that of Acharya et al. (2022).14

Every state k has a payoff that is proportional to the number of electoral college votes the

state has, ek. In period T + 1, if the game terminates with pk,T+1 ≥ 0 (pk,T+1 < 0), candidate

R (D) receives ekE, where E denotes the maximal payoff a candidate can receive. Candidate

R’s total payoff is the aggregate of payoffs received from each state and it is given by:

VR,T+1(pT+1) =
K∑

k=1

ekE × 1
{
pk,T+1 > 0

}
. (2.3)

2.2 Timing of Decisions and Information

Although campaigns do publish week-ahead rally calendars, those calendars are not binding

contracts. Table A2 documents numerous cases—across parties and offices—where rallies

were cancelled, moved, or added within a 24-hours’ notice in response to protests (popu-

larity shocks), controversy (popularity shocks), weather (cost shocks), security threats (cost

shocks), or health shocks (cost shocks). Hence candidates retain substantial real-time dis-

cretion over the location and timing of events.

To capture that institutional reality, I treat rally location choices as a game without com-

mitment: at the start of each period, candidates observe the current state of the race and

then decide where (or whether) to rally in that period. Candidates in this model do not

commit to future rallies, as these can be revised in the next period if circumstances change.

Modeling rally decisions as being scheduled in advance would artificially constrain behav-

ior and contradict the evidence provided in Table A2. In Appendix D.1, I discuss a version

of the model in which candidates schedule rallies one week in advance. The estimates from

that model are also reported in Section 6, and they show that the results do not change sig-

nificantly. Moreover, Vuong’s model selection test rejects the scheduling model in favor of

the one presented in this section.

Stage-game structure. In each period t ∈ {1, 2, . . . ,T} the following six sub-periods, illus-

trated in Figure 1, unfold:

14The authors also micro-founded the mean-reverting process by considering a set of impressionable voters

(Andonie and Diermeier, 2019) who vote on the basis of good will.
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τ1 The popularity-level vector pt =
(
p1t, p2t, . . . , pKt

)
is observed by the candidates.

τ2 Nature draws the R’s and D’s order of play for the stage game. The probability i is

chosen as the first mover is denoted by fi.

τ3 The first mover i’s cost shocks, ϵi f ,t =
(
ϵi f ,t,0, ϵi f ,t,1, . . . , ϵi f ,t,K

)
, are realized. These cost

shocks capture the effect of unforeseen events on rally decisions.15.

τ4 The first mover, i, makes a rally decision by solving the following bellman equation:

Vi f t(pt, ϵi f ,t) = max
k∈{0,1,...,K}

{
− ci × 1{k , 0} − ϵi f ,t,k

+ β
K∑

l=0

Ep

[
Vi,t+1(p)

∣∣∣ait = k, a jt = l, pt

]
× σ js,t

(
l; k, pt

)}
,

(2.4)

where the flow utility consists of the cost ci and the random cost shock ϵi f ,t,k. This

continuation value consists of a nested conditional expectation of i’s value in the next

period. The inner expectation is taken with respect to popularity in the next period

given actions, ait = k, a jt = l, and current-period popularity pt. The outer expectation

is with respect to second mover j’s action given i’s action k and current-period popu-

larity pt. The probability of j choosing an action l is denoted by σ js,t
(
l; k, pt

)
and it is an

equilibrium object. Let ai f t(pt, ϵi f ,t) be the associated policy function with Vi f t(pt, ϵi f ,t).

τ5 The second mover j’s cost shocks, ϵ js,t =
(
ϵ js,t,0, ϵ js,t,1, . . . , ϵ js,t,K

)
, are realized.

τ6 The second mover j makes a rally decision. The second mover, j, also observes the first

mover’s action. Therefore, ai f ,t is also a state variable for the second mover in addition

to popularity and cost shocks. After observing these state variables, second mover j

solves the following bellman equation:

V jst(l, pt, ϵ js,t) = max
k∈{0,1,...,K}

{
− c j × 1{k , 0} − ϵ js,t,k + βEp

[
V j,t+1(p)

∣∣∣a jt = k, ait = l, pt

] }
,

(2.5)

where ci and ϵis,t,k are the flow costs from choosing option k. The continuation value is

the expectation of i’s value in the next period given ait, a jt, pt. Let aist be the associated

policy function.

15The interpretation of cost shocks using unforeseen events in this context is not just a convenience con-

struct. For instance, Hurricane Sandy made campaigning on the Atlantic seaboard very difficult in the 2012

presidential election.
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Candidate i’s value function at popularity vector pt prior to the order of play in period t is

given by:

Vi,t(pt) = fi × Eϵi f ,t

(
Vi f t(pt, ϵi f t)

)
+ (1 − fi)

K∑
k=0

[
σ j f t(k; pt) × Eϵis,t

(
Vist(k, pt, ϵist)

)]
. (2.6)

With probability fi, i is the first mover and the termEϵi f ,t

(
Vi f t(pt, ϵi f t)

)
is the expected payoff

to the first mover. The second term is the expected payoff of i when they are the second

mover. This term is a nested expectation: the outer expectation is taken with respect to j’s

rally decisions when j is the first mover and the inner expectation is taken with respect to

cost shocks.

2.3 Equilibrium

Recall that this is a game of perfect information as only one candidate moves at a given time

and all past actions and shocks are common knowledge. Therefore, the game is solved using

backward induction.

Assumption 2.2 (Independent Cost Shocks) Cost shocks are independent across all infor-

mation nodes and actions.

This assumption implies that the current cost shocks are payoff relevant, but past cost

shocks are not. I also assume that cost shocks are drawn from the type-1 extreme value

distribution.

Assumption 2.3 (Distribution of Cost Shocks) Cost shocks are drawn from the type-1 ex-

treme value distribution.

Assumptions 2.3 and 2.2 ensure that the subgame perfect equilibrium exists and is essen-

tially unique, i.e., multiplicity can exist with probability zero.16 Moreover, we can also show

that best responses, in probability space, are functions of current popularity, cost shocks,

and, in the case of the second mover, first mover action. Proposition 2.1 lays out this char-

acterization.

Proposition 2.1 Given Equation 2.3, which defines the electoral payoff, and Assumptions 2.2

16The only way multiple equilibria will exist is when a candidate is indifferent between two actions. How-

ever, under these assumptions the random variable formed by adding ϵimtk to −ϵimtl for each i, m, t ,k, l is a

continuous random variable. Therefore, the indifference conditions hold with probability zero.
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and 2.3, the following equations hold for all t = 1, 2, ...,T

Vi,t(pt) = fi × ln
( K∑

k=0

exp
{
ui f ,t(k; pt)

})
+ (1 − fi) ×

K∑
k=0

[
σ j f ,t(k; pt) ln

( K∑
l=0

exp
{
uis,t(l; k, pt))

})]
+ γ

(2.7)

σi f ,t(k; pt) = P
(
k = a∗i f ,t(pt, ϵi f ,t)

)
=

exp
(
ui f ,t(k; pt) − ui f ,t(0; pt)

)
1 +

∑K
l=1 exp

(
ui f ,t(l; pt) − ui f ,t(0; pt)

) (2.8)

σis,t(k; l, pt) = P
(
k = a∗is,t(a j f t = l, pt, ϵis,t)

)
=

exp
(
uis,t(k; l, pt) − uis,t(0; l, pt)

)
1 +

∑K
q=1 exp

(
uis,t(q; l, pt) − uis,t(0; l, pt)

) , (2.9)

where Vi,t is equilibrium period t value of candidate i. Moreover, σi f ,t and σis,t are the equi-

librium choices of the first and second mover, respectively. Lastly, ui f ,t and uis,t are the option-

specific value functions of the first and the second mover, respectively.17

The proof of Proposition 2.1 is given in Section A.1. The proof uses induction. Starting

with the second mover I show that if period t + 1 value function, Vi,t+1, is bounded then

the optimal actions given the cost shocks are unique a.s. and characterize the conditional

choice probabilities and the value function. Then I repeat these steps for the first mover. For

the inductive argument, I show that if period t + 1 value function is bounded then period t

value function is also bounded. Since period T + 1 value function is bounded by definition,

proposition holds for all periods.

I rely on simulations to analyze equilibrium behavior since equilibrium choices do not

have reduced form expressions and the presence of non-linear functions18 makes applying

montone comparative static results infeasible. Moreover, I analyze a candidate i’s probabil-

ity of choosing k before nature chooses the order of play in a given period, call this quantity

σit(k; pt).19

17Or deterministic part of period t payoffs.
18Such as the standard normal cumulative distribution function for the expected payoff in period T + 1,

logexp sum to evaluate t + 1 value function, and multinomial logit functional forms for conditional choice

probabilities.
19To calculate this, first I calculate the joint probability of candidates i and j choosing k and l respectively,

call this σt(k, l; pt) =
σi f t(k,pt)σ jst(l;k,pt)+σ j f t(l,pt)σist(k;l,pt)

2 . Then σit(k; pt) =
∑

l σt(k, l; pt). I follow Judd et al. (2014),

Judd et al. (2017), and Heiss and Winschel (2008) for simulating σis,t and σi f t for i ∈ {R,D}. Online Appendix F

provides the details.
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Three remarks are necessary regarding how the σit(k, pt) relates with pkt, which is demon-

strated in Figure 2a. First note, the conditional choice probabilities have a weak relation-

ship with popularity in the respective states in earlier periods. The explanation behind this

is twofold. For earlier periods (i.e., small t), electoral payoff incentives are repeatedly dis-

counted and therefore have negligible influence. Therefore, conditional choice probabilities

do not depend on popularity. Also, earlier rallies have negligible effects on election day pop-

ularity because these effects decay exponentially with time. As a consequence, earlier rallies

are less beneficial for the candidates and therefore in equilibrium probability of holding a

rally is low.

A second remark highlights what happens when we are closer to election day. As the elec-

tion approaches, there is a higher probability of a rally in states where a candidate’s popu-

larity is close to zero. This is true because of the nature of electoral payoffs at the state level.

The winner-takes-all payoff at the state level ensures that the change in the expected payoff

due to a rally is maximal when a candidate’s popularity is closer to zero and negligible when

that candidate’s popularity is lopsided. The third remark focuses on the transition shown in

Figure 2a. As the elections approaches, the decay and discounting channel weakens, making

rallying profitable but only in states where the candidate has close to zero popularity.

2.4 Comparative Statics

In this section, I discuss four comparative statics concerning rally effectiveness, cost of ral-

lying, persistence, and volatility in popularity. A primary consequence of increased persis-

tence in popularity (ρ) is heightened observed autocorrelation. Furthermore, greater persis-

tence leads to earlier rallies exerting a stronger influence on election day popularity (pT+1)

across all current period popularity levels (pt). This stronger effect prompts the emergence

of a bell-shaped relationship between rallies and popularity earlier rather than later. To il-

lustrate this, consider the comparison between Figures 2a and 2b. Figure 2a, which has a

higher ρ value, displays higher, more distinctly bell-shaped rally probabilities in earlier pe-

riods compared to Figure 2b, where ρ is lower and the probabilities are flatter and lower.

Increasing the cost of rallying parameter (ci) diminishes the likelihood of rallying as it

becomes a more expensive option. This effect is consistent across all periods and levels

of popularity, as demonstrated by the fact that ci is higher in Figure 2c than in Figure 2a.
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(f) σν ↑

Figure 2: This figure illustrates how the probability of rallying in a state changes when the key parameters ρ,

αi, ci, and σν change. Here T − t denotes the periods before the election. For the baseline I fix parameter values

αR = −αD = 0.07, ρ = 0.99, cR = cD = 2.5, and σν = 0.2. There are four states and they are symmetric except

for the popularity values. A candidate’s popularity in a state is 0, −20 and 20 for states 2, 3 and 4, respectively.

The x-axis shows the variation in state 1’s popularity value. Panels 2b, 2c, 2e, and 2f illustrates the case when

ρ = 0.95, cR = 3.5, αR = 0.15, and σν = 0.5, respectively while the other parameters are kept the same as in the

baseline.

Conversely, an increase in the rally effectiveness parameter (αi) results in a higher frequency

of rallies since they become more advantageous for the candidates, causing the bell-shaped

relationship to manifest sooner, as shown in Figure 2e.

Increasing the volatility in popularity parameter (σν) introduces greater uncertainty re-

garding future popularity. This uncertainty has two effects. First, it reduces rally probabil-

ities when popularity is near the threshold due to the risk of unfavorable outcomes. Sec-

ond, at extreme popularity values, the likelihood of holding a rally increases, particularly

in earlier periods. In situations where popularity is significantly negative, increased volatil-

ity increases the prospects of a comeback for trailing candidates, prompting more frequent

rallies. Conversely, when candidates have a strong lead, increased volatility increases the
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risk of losing their advantage, motivating them to consolidate their position through more

frequent rallies. These dynamics are evident when one compares the rally probabilities in

Figures 2a and 2f.

3 Data

3.1 Data Sources and Summary Statistics

This paper uses two primary data sources. The first, Democracy in Action, provides the rally

decisions. The second, FiveThirtyEight, provides state-specific poll margins (popularity in

the model).

Rally decisions: The data on rally decisions were obtained from Democracy in Action, a

website created by Eric M. Appleman. For the 2012 and 2016 presidential elections, I used

Appleman (2012) and Appleman (2016), respectively. The website provides daily records of

campaign activities undertaken by each candidate, including rallies, fundraisers, interviews,

church visits, and other appearances (see Table A1 for the classification). To isolate politi-

cal rallies, I retained only those entries whose description field mentions the terms “rally,”

“speech,” or “special event.” Other activities—such as fundraisers, interviews, or church vis-

its—were excluded because they do not consistently involve persuasive public communi-

cation. Fundraisers are typically private events aimed at resource mobilization rather than

voter persuasion. Church visits are heterogeneous: some involve silent attendance or pri-

vate meetings, others include short remarks, and many are not intended as public addresses.

In instances where a church visit involved a speech, the entry was labeled accordingly based

on the presence of “speech” in the description. “Stops” refer to impromptu visits where can-

didates might greet crowds, dine, or briefly interact with the public, but rarely involve formal

persuasion. Arbitrarily including such varied activities would introduce measurement error

and undermine the identification of persuasive effects. Rallies, by contrast, are deliberate,

public-facing, and consistently structured to persuade voters—making them the most ap-

propriate unit for modeling dynamic campaign behavior.

Poll Margins: I use FiveThirtyEight’s poll repository to obtain aggregate poll margins at

the state level. FiveThirtyEight is an organization that focuses on opinion poll analysis,

economics, politics, and sports blogging. Since its inception, FiveThirtyEight has focused
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on producing reliable forecasts for presidential general elections, primaries, congressional

elections, and gubernatorial elections. In 2016, the organization produced one of the most

accurate forecasts for the presidential election. As a poll aggregator, FiveThirtyEight collects

polls from multiple pollsters to generate reliable forecasts. It uses individual polls to produce

polling averages after correcting for partisan biases that make individual polls unsuitable for

a comprehensive study. 20

While FiveThirtyEight’s polling averages provide a high-quality and widely used data source,

they could potentially influence model estimates—particularly the persistence parameter—due

to polling inaccuracies, the infrequent release of underlying polls, or the modeling proce-

dure itself. To address these concerns, I conduct a series of robustness checks in Section 6

that test the sensitivity of my results to each of these issues. Across all exercises, I find that

the key parameter estimates remain stable, supporting the reliability of the main results.

The aggregate number of activities in the raw data obtained after classifying the set of

all activities is provided in Table A1.21 The table also shows how many rallies were removed

specifically after the cleaning process for each candidate. Detailed summary statistics for

the swing states are provided in Table 1. Strong-hold states are excluded for reasons detailed

in Section 4.3. The swing states provide a sufficient cross-sectional variation in a Republi-

can candidate’s poll margin lead, ranging from −5.26 percentage points to 8.59 percentage

points in 2012 and from−7.1 percentage points to 14.3 percentage points. However, within-

state variation in poll margins is smaller. Most standard errors are between 0.6 to 1.9, sug-

gesting that day-to-day variation in poll margin lead is moderate.

As can be seen in Table 1, Florida witnessed a significant number of rallies consistently

in both elections (26 in 2012 and 38 in 2016). Arizona had no rallies in 2012, and only 3 in

2016. Ohio also witnessed high number of rallies in both years, with 46 rallies in 2012 and

23 in 2016. By contrast, Pennsylvania had an average of 2 rallies in 2012 but 25 rallies per

20The FiveThirtyEight polling series is constructed using a Bayesian model with data-driven weights, which

could in principle raise concerns about mechanical smoothing or artificially inflated persistence. However,

the weekly decay rate implied by my model—approximately 28%—falls between the slower-moving dynamics

reported in Acharya et al. (2022) (10–15% weekly decay) and the more rapidly fading experimental effects in

Gerber et al. (2011), where influence typically dissipates within 1–2 days. These comparisons suggest that

the results are consistent with external estimates and not an artefact of the specific poll aggregation method.

For details on the poll aggregation method used visit https://fivethirtyeight.com/features/a-users-

guide-to-fivethirtyeights-2016-general-election-forecast/
21These numbers correspond to last 125 days. For the analysis I focus on last 100 days.
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Table 1: Summary Statistics

2012 Election 2016 Election

Poll Lead Rallies Poll Lead Rallies

State Mean Std. Dev. Obama Romney Mean Std. Dev. Clinton Trump EC Votes

Arizona 8.59 0.785 0 0 1.58 1.1 0 3 11

Colorado -0.394 1.200 11 8 -4.91 1.5 0 8 9

Florida -0.0386 1.380 6 20 -2.47 0.977 15 23 29

Iowa -1.32 1.230 15 10 1.160 1.41 4 5 6

Michigan -4.78 1.820 0 0 -7.170 1.3 4 5 16

Nevada -2.98 0.755 6 4 -0.731 1.1 4 4 6

New Hampshire -2.59 1.4 6 3 -5.91 1.72 2 8 4

North Carolina 2.4 1.06 0 3 -1.66 0.828 9 15 15

Ohio -2.58 1.2 20 26 -0.849 1.69 10 13 18

Pennsylvania -5.26 1.21 0 2 -6.26 1.09 9 16 20

Virginia -0.996 1.13 10 20 -6.87 1.91 0 6 13

Wisconsin -3.88 1.67 5 0 -7.1 1.62 0 5 10

a Note: The table shows summary statistics for the Republican candidate’s poll margin lead, the number of

rallies held by all candidates across the two elections, and the number of electoral college votes by state.

day in 2016. Pennsylvania is an example of a state whose relative importance changed from

one election to another. This pattern is reversed for Virginia, which had 30 rallies in 2012

but only 6 in 2016.

3.2 Dynamic Patterns of Political Rallies

Rally Ramp-up: For each candidate, rally intensity increases as election day approaches.

This pattern is evident in Figure 3. To produce these plots, I consider daily rallies across all

states. Then, I create 15-day bins for 90-1 days before an election and a 10-day bin for 100-91

day before an election and calculate average rallies per day, standard deviation, and the cor-

responding 95% confidence interval. The pattern in Figure 3 is similar to dynamic spending

patterns documented and thoroughly studied in Acharya et al. (2022) and, therefore, can be

explained by the decay rate of the AR(1) process for modeling popularity. In my model, the

persistence in popularity parameter has a one-to-one relation with the decay rate. The de-

viation from Acharya et al. (2022) is the candidate-level heterogeneity in these patterns that
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Figure 3: This figure shows average rallies per day for 15-day bins (and a 10-day bin for 100–91 days

before the election). For each of these bins the corresponding 95% confidence interval for average

rallies per day is also provided.
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Figure 4: This figure shows a bin scatter of a candidate’s number of rallies in a day and poll margin

lead along with a generalized additive model fit line.

my model can support due to candidate-specific cost and rally effectiveness.22

Rallies and Poll Margin: Candidates rally in highly contested states as elections approach.

This pattern relates to the qualitative prediction discussed in Section 2 (Figure 2a). To doc-

ument this pattern, I create 25-day bins and analyze candidates’ rallies per day in a state

against their lagged poll margin lead in Figure 4. I also plot generalized additive model fits

for each candidate and day bin. In Figure 4, it is evident that as the election approaches,

22In Acharya et al. (2022), these differences cannot be thoroughly analyzed as the authors focus on spending

ratios while I use individual choices for identifying and estimating my model.

19



100−76 Days Left 75−51 Days Left 50−26 Days Left 25 Days Left

10 20 30 10 20 30 10 20 30 10 20 30
0.0

0.1

0.2

0.3

Electoral College Votes

R
al

lie
s 

pe
r 

D
ay

Figure 5: This figure shows a bin scatter of a candidate’s number of rallies and electoral college votes

at the state × day level for swing states.

candidates rally more intensely in states where candidate polls are neck and neck. A cross-

sectional pattern for television advertising and vote share lead is documented in Gordon

and Hartmann (2016), and a cross-sectional pattern for campaign activity is documented in

Strömberg (2008).

Rallies and Electoral College Votes: Lastly, I document how rally intensity correlates with

electoral college votes within the states where competition is neck and neck. More specifi-

cally, I consider the states listed in Table 1 for this exercise.23 Within this set of states, can-

didates prioritize states with higher electoral college votes over those with lower electoral

college votes. From the Table A8 and Figure 5 show that for all candidates, the correlation

between rallies and electoral college votes increases as the election day approaches.24

4 Identification and Estimation

4.1 Parameterization and Identification

For the parameterization of rally cost parameters, I add state-level fixed costs to the existing

candidate-specific parameters, which allows for cost heterogeneity across states. The cost

parameters are given by cR, cD, c1, . . . , cK. Controlling for all state fixed effects along with the

candidate specific cost of rallying leads to a multicollinearity problem in this setting. For any

23These states for 2012 have more states than the swing states used in Snyder and Yousaf (2020). For 2016, if

Maine is also included, these states will be the same as the swing states used in Snyder and Yousaf (2020).
24The candidate level analysis reveals this pattern for Trump, Clinton, and Romney. In the case of Obama,

the correlation starts negative and significant value and gradually becomes positive, but insignificant.
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given set of values cR, cD, c1, . . . , cK, I can reparameterize the costs by setting c̃R = cR + cK,

c̃D = cD+ cK, c̃k = ck− cK for k = 1, . . . ,K−1, and c̃K = 0, without changing the effective cost

of rallying in any state, which is given by c̃i + c̃k = ci + ck for i ∈ {R,D} and k ∈ {1, 2, . . . ,K}.

This transformation leaves the total cost of rallying in a state k unchanged. To avoid this

problem I normalize one state’s fixed cost to 0. I choose cK = 0 and then the parameter cR

and cD are identified by the initial level of rallying in state K. Parameter ck is identified by the

average of the two candidates’ probability of rallying in state k.

The second set of parameters that we are interested in is the set of parameters that govern

the AR(1) process defined in equation 2.1. It include αR, αD, ρ, σν, δ1, . . . , δK. The identifica-

tion ofαi relies on candidate i’s strategy and the change in popularity, Pikt, post a rally in state

k at time t − 1. The parameter ρ is identified jointly by the autocorrelation of poll margins

and the gradual increase in the level of rallying as the election approaches. The dispersion in

poll margins help in identifying σν. State-specific drifts, δk are identified by long-run means

of popularity.

The data used in this paper does not allow one to identify the parameters f (i.e., the prob-

ability of R moving first). To identify f , one would need observations on who moved first,

which is unavailable. I calibrate f to a value of 0.5, as this value eliminates any ex-ante first

mover or second mover advantage in the game. I also check robustness of the estimates if f

is set to 0.33 or 0.67 and do not find significant changes in the estimates. Finally, I calibrate E

to 538, which is the total number of electoral college votes. As a result, payoffs are measured

in units of electoral college votes.

4.2 Likelihood

Campaigns can—and frequently do—schedule several rallies on the same calendar day, while

reliable polling data are available only at the daily frequency. I therefore model popularity

as a latent AR(1) process evolving at the quarter-day level (four sub-periods per day), with

the FiveThirtyEight state margin serving as a single daily observation of that latent state.

An alternative approach is to assume that candidates can allocate at most four rallies

across K states in each period, where a period corresponds to a day. This allows for multiple

rallies in the same state or no rallies at all in some (or all) states. The choice space in this

setting contains
(K+r

r

)
potential alternatives, where r is the maximum number of rallies and
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K is the number of states. With K = 4 and r = 4, this yields 70 combinations. For the

first mover, this implies 70 option-specific value functions to solve for.25 For the second

mover, we have 4,900 option-specific value functions, since there are 70 options for each

possible choice of the first mover. Since there are two candidates, we must track 9,940 value

functions per period. Given the absence of stationarity, the total number of value functions

over time approaches one million (100 daily observations). While modeling the process at

the quarter-day level may initially appear capricious and confusing, this approach results

in substantial dimensionality reduction. For a given value of K and r, we have a total of

2 ·
(
K + 1 + (K + 1)2)

· r · 100 option-specific value functions. For K = r = 4, we get only

24,000 option-specific value functions as opposed to a million.

More importantly, because an AR(1) process is closed under temporal aggregation (see

Hamilton 1994, Ch. 6), the higher-frequency specification is statistically equivalent to an

AR(1) process defined directly at the daily level. The persistence parameters are linked by a

deterministic mapping, and no identification assumptions are violated. The likelihood con-

structed in this section integrates over the three unobserved within-day states, exactly as in

a standard state–space (Kalman filter) framework.

The estimated persistence, ρ̂ ≈ 0.99 (equivalent to a daily persistence of 0.95), lies well

within the range reported by Hill et al. (2013), Gerber et al. (2011), and Acharya et al. (2022),

confirming that the sub-daily treatment does not spuriously inflate serial correlation. In

weekly terms, the implied decay rate of approximately 28% falls between the highly persis-

tent estimates in Acharya et al. (2022), who report typical weekly decay rates of 10–15%, and

the more rapidly fading experimental effects in Gerber et al. (2011). I also analyze the sensi-

tivity of the estimated parameter to polling accuracy, FiveThirtyEight’s modeling procedure,

and the infrequency of polls in Section 6, and find no substantial deviations.

Given the latent structure governing the evolution of popularity over time, I estimate the

model by maximizing the full-information likelihood, solving the dynamic game at each

candidate parameter value. Note that the sequential move assumption of this game brings

it closer to Igami (2017). Therefore, I choose the full solution method to estimate this game

25Each option corresponds to a specific allocation of rallies across the states, such that the total number of

rallies does not exceed 4. Formally, an allocation is given by ni f t = (ni f t,1,ni f t,2, . . . ,ni f t,K), where ni f tk ≥ 0 for

all k, and
∑

k ni f tk ≤ 4. The expected payoff that the first mover receives from each possible rally allocation,

denoted by ui f t,ni f t (pt), depends on the current popularity across all K states. This defines an option-specific

value function that must be approximated using a sparse polynomial.
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(Rust, 1987).26 This subsection presents the log likelihood that I use to estimate the model.

Let At denote the realized rally decisions in a period t, for t = 1, 2, . . . ,T. Let Pt denote the

realized poll margins in a given period t, for t = 1, 2, . . . ,T + 1. Given the assumptions 2.2,

2.3 and 2.1 we can characterize the transition density for random vectors X̃t = (At,Pt+1) for

t = 1, 2, . . . ,T. This states that X̃t is the vector containing rally decisions in period t and the

popularity vector in period t + 1. The transition density that governs the random vectors,

X̃1, X̃2, . . . , X̃T, is instrumental in deriving the likelihood function. Lemma 4.1 defines this

transition density for us.

Lemma 4.1 Given Assumptions 2.2, 2.3, and 2.1 the random vectors X̃1, X̃2, . . . , X̃T obey the

Markov property. Moreover, the transition densityψt(Xt|Xt−1) for t ≥ 1 is given by:

ψt(X̃t|X̃t−1) = f (Pt|AR,t,AD,t,Pt)σt (At; Pt) (4.1)

where σt is joint probability of rallying and f is density of popularity shocks.

The proof of Lemma 4.1 follows straight from the equilibrium choice probabilities and the

AR(1) process for modeling local popularity. The transition density,ψt(X̃t|X̃t+1) would be the

ideal choice for estimation if all popularity values were observed. I have one observation

of poll margins per day. Since I define periods in the model as each lasting a quarter of a

day, we are limited to one observation of poll margins for every four periods. I assume that

poll margins I observe at d are realized at the beginning of day d + 1. In other words, the

poll margin I observe on day d is isomorphic to the popularity candidates would observe in

period t = 4d + 1, which one may also call the first subperiod of day d + 1. The remaining

popularity values for periods 4d + 2, 4d + 3, and 4d + 4 are missing. Therefore, each period

t can be mapped to (d, l), where d is a day, and l is a subperiod of the day d. There will be

four subperiods in each day. Therefore, for any period t, there exists a day d and subperiod,

l such that t = 4(d − 1) + l.

Let Xd be the observations for day d. I observe all chosen rally decisions taken by candi-

dates on day d. These decisions are denoted by {A4d−3,A4d−2,A4d−1,A4d}, where A4(d−1)+l =

(AR,4(d−1)+l,AD,4(d−1)+l) for l = 1, 2, 3, 4. Note that Ai,4(d−1)+l is the rally decision taken by

candidate i on day d and subperiod l (or period 4(d − 1) + l). I also observe popular-

ity, or poll margin, for day d, which I assume to be realized in subperiod 1. Therefore,

26There is an active literature that studies the estimation of dynamic discrete games without making as-

sumptions on move order, such as Aguirregabiria and Mira (2007), Aguirregabiria and Marcoux (2021), Bajari

et al. (2007), Egesdal et al. (2015).
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for a given day d, P4d−3 is observed, but P4d−2, P4d−1 and P4d are not. It is worth noting

that P4(d−1)+l = (P4(d−1)+l,1,P4(d−1)+l,2 . . . ,P4(d−1)+l,K) where P4(d−1)+l,k ∈ R. For day d obser-

vation I consider d + 1 observed popularity. Hence for day d the observation is given by

Xd = {A4d−3,A4d−2,A4d−1,A4d,P4d+1}.

Proposition 4.1 shows that the random vectors {X1,X2, . . . ,XD̄} obey the Markov property

and that the day-to-day transition density of these observations, denoted by λθd (Xd|Xd−1).

Proposition 4.1 Given assumptions 2.2, 2.3 and 2.1 the random vectors {X1,X2, . . . ,XD̄} obeys

the Markov property and its governed by the transition densityλθd (Xd|Xd−1), which is given by:

λθd (Xd|Xd−1) =
∫

(p2,p3,p4)∈R3K

 4∏
l=1

σ4(d−1)+l(A4(d−1)+l; pl)

 ×
 4∏

l=1

f
(
pl+1|A4(d−1)+l, pl

) dp2dp3dp4 (4.2)

Where p1 = P4d−3 and p5 = P4d+1.

Proposition 4.1 is proved in Appendix A.1.2. The proof follows from applying Lemma

4.1 recursively. Based on this proposition I can formulate the likelihood of observing X1,

X2, . . . , XD̄. It is worth pointing out that this Markov process is not time homogeneous,

as the densities vary with day d. The key reason for having this density vary with day d is

the candidates’ equilibrium choice profiles. As seen in the data and also the model pre-

dictions, rally intensity increases as the election approaches and therefore a Markov pro-

cess that is time homogeneous cannot support these features. Finally, the log likelihood is

ℓℓ
(
θ; X1,X2, . . . ,XD̄

)
=

∑D̄
d=1 log

(
λθd

(
Xd

∣∣∣Xd−1

))
. The integration in Proposition 4.1 is not

feasible analytically and therefore I rely on Monte Carlo methods which are discussed in

Appendix C.

4.3 State Groups

Estimating the model for all U.S. states is infeasible, as it introduces 50 state variables into

the dynamic programming problem that each candidate must solve. Even when consider-

ing only the swing states, the resulting dimensionality reduction is insufficient for reliable

estimation. To address this, I construct groups of swing states based on their U.S. regions,

allowing the model to be estimated with sufficient accuracy. I also examine the robustness

of the estimates across three alternative definitions of state groups, discussed in Section 6.

Additionally, I also analyze the implications of grouping state on parameter estimates and

counterfactual results, reported in Tables A5, A6, and A7.
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Table 2: Summary Statistics for States Groups

Rallies Per Day R’s Poll Margin

State Romney’12 Obama’12 Trump’16 Clinton’16 2012 2016 Electoral College Votes

Southeast 0.12 0.17 0.15 0.04 3.93 2.27 26

(0.68) (0.81) (0.76) (0.40) (0.56) (0.96)

Midwest 0.10 0.20 0.15 0.08 -2.73 -2.08 32

(0.62) (0.87) (0.76) (0.56) (1.49) (1.36)

Northeast 0.31 0.26 0.37 0.22 -2.72 -0.39 42

(1.07) (0.99) (1.16) (0.91) (1.07) (1.28)

Southwest 0.43 0.16 0.44 0.24 1.52 0.21 57

(1.24) (0.78) (1.25) (0.95) (1.11) (0.96)

*Standard deviations in parentheses wherever applicable.

a Note: The table shows summary statistics for the number of daily rallies and the average Republican poll margin

lead across state groups. These statistics are given for the last 100 days before the election. In 2012 Midwest and

Northeast groups were Democrat leaning while Southeast group was Republican leaning. Relatively, the Southeast

group was neither Republican leaning nor Democrat leaning. In 2016, similar patterns hold for Southeast and

Midwest groups while Northeast and Southwest groups were relatively neutral.

Arizona

Colorado

Florida

Iowa

Michigan

Nevada

New Hampshire

North Carolina

Ohio
Pennsylvania

Virginia

Wisconsin

State Groups
South West
Mid West
North East
South East
<=2 Rallies

Figure 6: The figure displays states considered in the analysis. The unlabeled states, which are omitted, had

less than 2 rallies by each candidates. The states considered in the analysis are all swing states. To keep the

dimensionality of the model tractable I group these swing states into 4 groups.

Removing stronghold states from the analysis is not problematic. I demonstrate this

through Monte Carlo experiments in Table A5. In the Monte Carlo experiments, the data

are generated from a four-state model and then estimated using a two-state specification

(by dropping the stronghold states). As the table shows, the mean parameter estimates are

consistently close to the true values across all parameters, regardless of the electoral col-

lege distribution or state-specific drift configurations. Excluding stronghold states does not

materially alter the estimates. From the candidate’s perspective, the net benefit of rally-

ing in a stronghold state—where the drift term δk is large relative to the effectiveness pa-

rameter αi—is close to zero, since rallies are not sufficiently persuasive to overcome large

25



pre-existing support. From the popularity side, stronghold states typically receive very few

rallies, and thus lack the within-state variation needed to identify the effect of rallies on pop-

ularity. Moreover, this practice of removing stronghold states from analysis is common in

the literature studying persuasive effects of campaigning, including Spenkuch and Toniatti

(2018); Snyder and Yousaf (2020).

Grouping swing states into clusters is motivated by both computational tractability and

interpretability. Solving the model at the individual state level is infeasible due to the high

dimensionality of the state space. To evaluate the implications of this grouping, I conduct

Monte Carlo simulations (see Tables A6 and A7) using a data-generating process with four

states: two large and two small. The drift parameters are selected to ensure heterogene-

ity in the competitiveness of the election across states. The model is then estimated using

grouped data, in which popularity is averaged across states within each group. I consider

multiple grouping methods to assess the sensitivity of the estimates to how the groups are

constructed.27

In the grouped specification, the estimated group-level effectiveness parameters are smaller

in magnitude than the state-level effectiveness values. This is natural as the estimated ef-

fects in the grouped version correspond to the impact of rallies on a larger population unit—

i.e., a group of states—rather than on individual states. The attenuation arises because av-

eraging across heterogeneous states dampens the within-group variation relevant for iden-

tifying the impact of rallies. Grouping therefore operates conservatively—recovering the ef-

fect of rallies at the level of pooled populations rather than exaggerating individual state

responsiveness. This conservativeness carries through to counterfactual analyses: the sim-

ulated counterfactuals remain directionally consistent and do not overstate the total effect

of rallies, further supporting the robustness of the grouped-state approach (see Panel (D) in

Tables A6 and A7).

I create four groups of states, where each group is the intersection of a U.S. region and

27For instance, pairing one large and one small state. In this grouping, the first group combines an R-leaning

and a slightly D-leaning state, whereas the other group combines a D-leaning and a slightly R-leaning state.

Another grouping structure may combine large states together and small states together, where both large

states are R-leaning and both small states are D-leaning. I also examine additional grouping combinations in

Tables A6 and A7. Furthermore, by varying the overall drift magnitude—such as larger drifts in Table A6 and

smaller drifts in Table A7—I assess how state-level competitiveness influences the estimates.
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the swing states28 in that region. For instance, this intersection is given by swing states

Nevada, Arizona, and Colorado for the Southwest group. The Southeast group consists of

Florida, Virginia, and North Carolina. The Midwest group consists of Michigan, Wisconsin,

and Iowa. Finally, the Northeast group consists of New Hampshire, Pennsylvania, and Ohio.

Ohio is a Midwest state but it is included in the Northeast group in order to obtain a state

group with a similar number of electoral college votes as the Southwest group. Note that

grouping also absorbs spillovers or interdependence across nearby states, which are other-

wise omitted from the model.

I also consider three alternative definitions of state groups for robustness tests. One

groups only those states that are studied in Snyder and Yousaf (2020), another treats Florida

as the sole member of the Southeast state group by including Virginia and North Carolina in

the Northeast group as Florida is geographically isolated. Finally, the third one treats Ohio

as part of Midwest state group and not part of Northeast state group. I do not find substan-

tial deviation of estimates from the preferred specification. The results from this exercise are

discussed in Section 6.

For calculating poll margin leads for each state group, I consider the weighted mean of

poll margins for each state belonging to the group. The weight of each state is proportional

to its share of electoral college votes within the state group. The summary statistics for rallies

and final poll margins are provided in Table 2. For estimation, I consider deviation of poll

margins from the mean across all states and days, that is, 1
DK

∑K
k=1

∑D
d=1 Pk,d, where Pd,k is the

weighted average poll margin within a state group.

5 Results

Table 3 presents the results from the estimation exercise. Columns (1) and (2) correspond to

the main parameters. Columns (3) and (4) correspond to the fixed effects used in the model.

The estimates uncover that a Trump rally increased his poll margin lead over Clinton by

0.0839 percentage points (s.e. = 0.0155), while a Clinton rally increased her lead over Trump

by 0.0745 percentage points (s.e. = 0.0152). For 2012, I find a Romney rally increased his lead

over Obama by 0.100 percentage points (s.e. = 0.0227) while an Obama rally increased his

28Here, the swing states, for the lack of a better name, are defined as states with at least two rallies in either

election.
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lead over Romney by 0.042 percentage points (s.e. = 0.0135). These estimates are statistically

significant at the 1% level of significance. The net effect of both candidates rallying in a

state for 2016 is a gain of 0.0094 percentage points (s.e. = 0.012) in favor of Trump, which

is statistically insignificant, while for 2012 the net effect is a gain of 0.058 percentage points

(s.e. = 0.014) in favor of Romney which is statistically significant.

As mentioned above, the literature has found mixed evidence on whether campaign vis-

its increase support from the electorate (Shaw, 1999; Shaw and Roberts, 2000; Shaw and

Gimpel, 2012; Wood, 2016). This paper’s findings qualitatively agree with articles that have

considered candidate-specific effects (Shaw and Gimpel, 2012). This paper also shows that

rally effectiveness can differ significantly in magnitude, unlike the assumption of identical

effectiveness made in Strömberg (2008).

The persistence in popularity parameter is approximately 0.990 (s.e. = 0.002) for 2012 and

0.991 (s.e. = 0.001) for 2016. The implied weekly decay rate is 28%.29 This decay rate lies in

the right tail of the perceived decay rate distribution estimated in Acharya et al. (2022), but it

is lower than the estimate reported in Hill et al. (2013). The third-degree lagged polynomial

specification considered in Gerber et al. (2011) yields a decay rate of 25%, which is close to

the estimate in this paper.

The cost estimates reflect the expected benefit threshold, measured in electoral college

votes, beyond which a candidate chooses to rally in a state. The estimate of Trump’s thresh-

old is significantly lower than the estimated threshold for Clinton. These estimates reveal

that Trump was more likely to hold a rally even if it had a much smaller chance of con-

tributing to his overall success. This estimate captures the asymmetry in rally decisions be-

tween the opponents, despite possessing similar levels of rally effectiveness. Meanwhile,

this asymmetry is not found for the 2012 election, as the cost estimates of rallies are not

significantly different for Obama and Romney.

To put rally effectiveness estimates into perspective, refer to Table 4. The table displays

the persuasion rates of rallies and TV advertising. The persuasion rate measures the pro-

portion of voters who switched their voting choice from candidate i to the opponent after

being exposed to a tool of persuasion of candidate i. The persuasion rates of TV advertising

in 2012, estimated in Spenkuch and Toniatti (2018), are also provided. I adopt the defini-

29To calculate the decay rate, λ, over ∆ periods, I use the relation ρ = e−
λ
∆ . For the weekly decay rate,

∆ = 7 × 4, and therefore λ = −28 × log(ρ), where log denotes the natural logarithm.
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Table 3: Parameter Estimates

Main Parameters Fixed Effects

Parameters 2012 2016 Parameters 2012 2016

Popularity

αR 0.1 0.0839 δ1 0.04 0.023
(0.0227) (0.0155) (0.011) (0.008)

αD -0.042 -0.0745 δ2 -0.027 -0.02
(0.0135) (0.0152) (0.0082) (0.009)

ρ 0.99 0.991 δ3 -0.027 -0.0069
(0.002) (0.001) (0.0082) (0.0073)

σ 0.147 0.16 δ4 0.00019 -0.0074
(0.0143) (0.0148) (0.0079) (0.0073)

cR 2.9 2.36 c1 0.367 0.943
(0.287) (0.208) (0.324) (0.411)

cD 2.83 3.26 c2 0.421 0.788
(0.206) (0.259) (0.277) (0.308)

c3 -0.08640 -0.0443
(0.281) (0.22)

2012 2016
Observations 100 100

Log Likelihood -656.26 -654.60

Standard errors are reported in parentheses.

Note: The table shows estimates for the model parameters. Here the stan-

dard errors have been computed by using observation wise gradient and like-

lihood hessian. I use HAC estimates for this purpose to take care of correla-

tions in gradient values. For computing the gradient and hessian I used Auto-

differentiation in Julia.

tion of persuasion rates of DellaVigna and Kaplan (2007) and Spenkuch and Toniatti (2018),

to derive these objects for this setting. The persuasion rate on the election day is given in

Equation (5.1), where Vk is voter turnout in state k:

f Rally
i = E

 K∑
k=1

T∑
t=1

Vk

T · (
∑

l Vl)
·

2
100 + (−1)1{i=R}Pkt

· |αi|

 (5.1)

The term (100 + (−1)1{i=R}Pkt)/2 calculates proportion of voters in support of the oppo-

nent of candidate i when no rallies are held in state k in period t.30 When this term is multi-

plied by |αi|, it gives the estimate of the proportion of voters who switch from the opponent

to candidate i. Then I take average across all states and periods and calculate its expectation

30Note that for k, t we have Pkt = PRkt − PDkt and PRkt + PDkt = 100. Then PRkt = (100 + Pkt)/2 and PDkt =

(100 − Pkt)/2. Since the denominator should be the number of voters who do not support a candidate, PDkt is

used as denominator for f Rally
R and vice-versa.
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Table 4: Persuasion Rates

2012 2016 Spenkuch and Toniatti (2018)

Romney Obama Trump Clinton Rep. Ads Dem. Ads

Pers. Rate of 1 Rally/T.V. ad (%) 0.20 0.085 0.168 0.150 0.01 0.03

0.001 0.0003 0.032 0.029 0.005 0.004

Agg. Switched Decisions (in Millions) 0.35 0.32 2.2

0.10 0.07 -

Standard errors are reported in parentheses.

Note: This table compares persuasion rates of rallies with those of advertising. Here I am considering persuasion rate of one rally on

the election day with those estimated for advertising by Spenkuch and Toniatti (2018). Persuasion rates of a rally in my setting is defined

and given by equation 5.1. The standard errors are calculated using the delta method. The aggregate number of switched decisions for

rallies is given by changes in vote margins in the counterfactual regarding electoral effects of rallies. For T.V. ads the numbers are taken

from Spenkuch and Toniatti (2018).

using simulations.

I find that the persuasion rates of rallies in 2012 and 2016 were higher than those of TV

advertising in 2012. For instance, 17 TV ad spots are as persuasive as one Trump rally. These

ratios for Romney, Obama, and Clinton are given by 20, 3, and 5 TV ad spots, respectively.

Contrary to the hypothesis that rallies are less important than TV ads in an election, these

numbers show that rallies are an important tool of persuasion.31 The cumulative effect of TV

ads can outweigh that of rallies since rallies are time-constrained. For instance, the number

of voters that changed their voting choice due to rallies in was 350K in 2012 and 320K in

2016 (see Section 7), whereas the number of voters who changed their vote due to TV ads

was 2.2M in 2012, roughly 6 times higher than the effect of rallies.

I examine the in-sample and out-of-sample performance of the model in Tables A9 and

5, respectively. For the in-sample, the model’s predicted average number of daily rallies

lies in the 95% confidence intervals of the observed average number of daily rallies. The

correlation for rally decisions predicted by the model and observed in the data varies from

69.5% (Trump) to 84% (for Clinton). Define prediction as the rally decision that has the

maximum probability. Then, I find that the worst proportion of correct predictions is 74%

for Trump and the highest proportion of correct predictions for Clinton is 86%.

To evaluate the out-of-sample model fit, refer to Table 5, I divide the data into two sub-

samples, training and validation. I randomly select (without replacement) 20% of the ob-

servations for the validation sample. I estimate the model on the remaining 80% of the

31However, the persuasion rates of rallies are still lower than that of TV news. For instance the persuasion

rate for FOX News is f = 11.6 (DellaVigna and Kaplan, 2007).
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Table 5: Out-of-Sample Fit

Panel (A): Comparison of Means

Romney Obama Trump Clinton

Model Data Model Data Model Data Model Data

Southwest 0.173 0.1 0.18 0.1 0.116 0.2 0.0675 0

0.14 0.14 0.2 0

Midwest 0.175 0.05 0.17 0.2 0.107 0.1 0.0697 0.05

0.1 0.2 0.14 0.1

Northeast 0.273 0.15 0.238 0.1 0.336 0.45 0.199 0.25

0.18 0.14 0.29 0.22

Southeast 0.376 0.25 0.28 0.1 0.323 0.2 0.206 0.3

0.22 0.14 0.2 0.24

Panel (B): Measures of Fit

Romney Obama Trump Clinton

Correlation 0.8303 0.8412 0.7022 0.8157

Mean Squared Error 0.2583 0.2429 0.4060 0.2679

Correct Predictions 0.8375 0.8750 0.7625 0.8500

a This table shows the out-of-sample model fit. Here I divide the data into two parts, where I randomly se-

lect (without replacement) 20% of the observations, call this the validation sample. I estimate the model

on the remaining 80% of the data, the training sample, and then calculate model fit metrics on the valida-

tion sample. For each period, I define prediction as the option with the highest probability of choosing.

Note that minimum of correct predictions across all candidates is 76%.

observations for the training sample, and then calculate model fit metrics on the validation

sample. The average number of daily rallies predicted by the model lies within one standard

deviation from its observed counterpart in the validation sample. The worst correlation is

0.70 corresponding to Trump’s rally decisions. I also calculate the correct predictions made

by the model, which range from 76% for Trump to 87% for Obama.

6 Robustness

6.1 Accounting for TV ads

The model does not incorporate television ads, which might be correlated with political ral-

lies. To address this concern, I follow Spenkuch and Toniatti (2018) and construct ad im-

pression measures at the state level using data from Nielsen Ad Intel data and the Weselyan
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Media Project. Then I define popularity as

Popdk = Poll Margindk − α
TV Ad
R R Ad Imp per capitadk + α

TV Ad
D D Ad Imp per capitadk, (6.1)

where Poll Margindk denotes R’s lead in polls in state k on day d over D. R Ad Imp per capitadk

and D Ad Imp per capitadk denote TV ad impressions per capita at the state level for R and

D, respectively. The parameters αTV Ad
R and αTV Ad

D are the TV ad effectiveness of estimates

from the estimated values in Column (8) of Table VII in Spenkuch and Toniatti (2018). The

resultant variable, Popdk, denotes poll margins for the estimation of the model, which is or-

thogonal to variation TV ads. The results from the estimation exercise are given in Columns

(1) and (2) of Table 6. Note that these new estimates do not change significantly from the

estimates reported in Table 3.

6.2 Candidates Schedule Rallies one week in advance

One key concern readers may have is the potential disconnect between how rallies are sched-

uled in practice and the modeling choice made in this paper, where candidates are assumed

to have the flexibility to schedule rallies immediately before they are held. To address this, I

construct a version of the model with commitment, where candidates schedule rallies one

week (i.e., 28 periods) in advance. The key departures from the baseline specification are de-

tailed in Section D.1. In the commitment model, a candidate’s information set includes cur-

rent popularity across all states as well as the rally schedules already committed to by both

themselves and their opponent. Each period, candidates choose where to hold a rally one

week later. They formulate a rational forecast of what their popularity will be a week ahead,

based on their currently committed schedule, the opponent’s schedule, and the popularity

shock observed in the current period.

I show that rather than tracking the full schedule of future rallies as the state variable, it

is suffice to track week-ahead popularity forecasts, which capture the net effect of all sched-

uled rallies on expected popularity and substantially reduces the dimension of the state vari-

ables. Decision-making in this model ends a week before the election.

The estimates for this model are reported in columns (13) and (14) of Table 6. The pa-

rameter estimates do not change significantly relative to the main specification. However,

when examining the average log-likelihood, we find that for 2016 it increases insignificantly

by 0.047 units (s.e. = 0.07), while for 2012 it decreases significantly by 0.221 units (s.e. =
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0.10). The combined change in average log-likelihood is -0.173 units (s.e. = 0.06), which

is statistically significant. Therefore, Vuong’s model selection test overall favors the main

specification.

Notably, since the parameter estimates remain largely unchanged, the substantial gap in

log-likelihood is attributable to model fit: rally decisions are better explained as functions of

current popularity shocks rather than as functions of week-lagged popularity. This provides

evidence that candidate behavior is better captured by a model allowing greater flexibility

in adjusting rally schedules, rather than by one in which schedules are fixed and cannot be

revised.

6.3 Alternate state-group definitions

I also consider three alternative state groupings. First, I reclassify North Carolina and Vir-

ginia into the Northeastern group. This is entirely plausible, given that both states are geo-

graphically closer to the Northeastern group than to Florida. As a result, the Southeastern

group includes only Florida. Estimates under this grouping are reported in Columns (3) and

(4) of Table 6. For 2016, I do not find significant differences in the rally effectiveness esti-

mates. For 2012, the effectiveness estimates decrease in magnitude but remain significantly

greater than zero, and are statistically indistinguishable in standard deviation units of popu-

larity. That is, the effect of a Romney rally, measured in standard deviation units of popular-

ity (αR/σν), is statistically indistinguishable between the main specification (αR/σν = 0.681,

s.e. = 0.13) and this alternative grouping (α/σν = 0.44, s.e. = 0.07). For Obama, the de-

crease in effectiveness relative to the main specification is statistically insignificant, both in

absolute terms and in standard deviation units (p-value = 0.57).

Second, I adopt the swing state classification used by Snyder and Yousaf (2020) in their

event study of political rallies. Results are reported in Columns (5) and (6) of Table 6. For

2016, I again find no significant changes in effectiveness estimates relative to the base-

line—both in absolute terms and in standard deviation units. For 2012, the estimates de-

crease in magnitude but remain significantly greater than zero. As before, for Obama, the

change in effectiveness is statistically insignificant in both absolute and standardized terms.

For Romney, the decrease is statistically significant, though the estimate remain significantly

above zero.
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Table 6: Robustness Tests

Control for T.V. Ads Alt. State Groups: Swing States in Aggregate Shocks Spatial Autocorrelation Polling Error Schedule Rallies

Spenkuch and Toniatti (2018) Isolate Florida Snyder and Yousaf (2020) σagg ρcov State-Wise a week in advance

Parameters 2012 2016 2012 2016 2012 2016 2012 2016 2012 2016 2012 2016 2012 2016

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

αR 0.0733 0.0862 0.0271 0.0796 0.037 0.0839 0.0724 0.0682 0.0817 0.065 0.0913 0.0745 0.109 0.0883

(0.0127) (0.0182) (0.00458) (0.0149) (0.00628) (0.0155) (0.0108) (0.0146) (0.0136) (0.0136) (0.0224) (0.0265) (0.0275) (0.0159)

αD -0.0534 -0.0828 -0.021 -0.0593 -0.0322 -0.0745 -0.0496 -0.0582 -0.00436 -0.0575 -0.0569 -0.0789 -0.064 -0.0646

(0.00923) (0.019) (0.00427) (0.0113) (0.00639) (0.0152) (0.00784) (0.0127) (0.00824) (0.0129) (0.0242) (0.0156) (0.0209) (0.0124)

ρ 0.987 1.01 0.991 0.988 0.987 0.991 0.986 0.989 0.994 0.99 0.994 0.992 0.993 0.991

(0.002) (0.001) (0.001) (0.002) (0.003) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.001)

σν 0.157 0.166 0.0611 0.157 0.0901 0.16 0.128 0.121 0.143 0.154 0.147 0.16 0.135 0.145

(0.0133) (0.0128) (0.00729) (0.0118) (0.0062) (0.0148) (0.0112) (0.00939) (0.0132) (0.0127) (0.0146) (0.0149) (0.0141) (0.013)

cR 2.71 2.68 3.33 2.69 2.78 2.36 2.74 2.38 2.86 2.38 2.75 2.39 2.73 2.42

(0.268) (0.241) (0.271) (0.235) (0.291) (0.208) (0.275) (0.198) (0.277) (0.201) (0.275) (0.208) (0.266) (0.218)

cD 2.83 3.55 3.44 3.49 2.92 3.26 2.85 3.19 2.63 3.21 2.84 3.33 2.82 3.17

(0.186) (0.305) (0.218) (0.292) (0.22) (0.259) (0.197) (0.257) (0.195) (0.255) (0.193) (0.291) (0.199) (0.26)

ρcorr - - - - - - - - 0.005 0.01 - - - -

- - - - - - - - (0.001) (0.002) - - - -

σagg - - - - - - 0.069 0.103 - - - - - -

- - - - - - (0.0144) (0.0138) - - - - - -

Fixed Effects:

Cost

Poll Margins

L̄L -6.9405 -6.7907 -2.8564 -6.3453 -4.6854 -6.546 -6.424 -618.58 -6.5334 -6.2152 -6.7018 -6.5844 -6.7235 -6.447

Observations 100 100 100 100 100 100 100 100 100 100 100 100 93 93

Standard errors are reported in parentheses.

Note: The table shows estimates for model parameters under 6 modifications. Columns (1) and (2) controls for T.V. ads by removing variation in poll margin data that can be explained by TV ad impressions. The effectiveness

of T.V. ad impressions are calibrated using estimates from Spenkuch and Toniatti (2018). Columns (3) and (4) consider state groups where Florida constitutes Southeastern states and North Carolina along with Virginia are

considered to be a part of Northeast states. Columns (5) and (6) consider states that are used by authors in Snyder and Yousaf (2020) for their event study. Columns (7) and (8) relax the assumption of uncorrelated popularity

shocks and allows for spatial autocorrelation in popularity. Columns (9) and (10) relaxes the assumption of uncorrelated popularity shocks and accommodates aggregate shocks in popularity. Columns (11) and (12) corrects for

state-specific ex-post forecast error. Specifically, I correct for the difference between election day poll margin and the observed vote shares for each state separately. Columns (13) and (14) report estimates for a model where

candidates schedule rallies one-week in advance, their information set consists of opponent schedules and poll-margins realized at the day of scheduling. Here the standard errors have been computed by using observation wise

gradient and likelihood hessian. I use HAC estimation for this purpose.
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Finally, I test a third grouping in which Ohio is included in the Midwest group (see Columns

(9) and (10) of Table A3). Under this specification, I do not find significant differences in the

standardized effectiveness estimates for either Romney (difference = −0.20, s.e. = 0.15) or

Obama (difference = −0.02, s.e. = 0.10). For 2016, I do not find significant differences in the

rally effectiveness estimates, both in absolute terms and in standard deviation units.

6.4 Polling

I conduct three robustness checks to assess the reliability of my estimates. First, I account

for ex-post polling errors by comparing each state’s election-day poll margin from FiveThir-

tyEight with the actual vote margin, and adjusting daily poll data accordingly. Estimating

the model using these corrected margins yields no significant changes (see columns (11)

and (12) of Table 6). Second, I address concerns about the infrequent release of individual

polls, which may bias the persistence parameter upward. Note that FiveThirtyEight incor-

porates national polls into their averages, with at least one new national poll released each

day during the final 100 days of the campaign. While state-level polls within the 12 swing

states are less frequent, their frequency increases sharply closer to the election: the num-

ber of state polls more than triples in the last 50 days (77.5 polls per day) compared to the

preceding 50 days (25 polls per day). Re-estimating the model using data from this later

period again produces stable estimates. Third, I test whether FiveThirtyEight’s weighting

procedure—based on pollster ratings, sample size, and ideological lean—affects the results.

Using raw state-level polls from 2016,32 I construct a daily series by averaging all polls based

on the dates when respondents were surveyed. Since at least one poll is in the field each

day for every state group, constructing a balanced panel of poll averages is feasible. This al-

ternative specification also yields parameter estimates that remain largely unchanged (see

column (11) in Table A3).

6.5 Correlated popularity shocks

I also test if estimates change significantly when one considers spatial correlation and the

presence of aggregate shocks. These features are accommodated by re-parameterizing the

variance-covariance matrix of popularity shocks. For spatial autocorrelation, I assume that

32Comparable raw polling data for 2012, including field dates, is limited.
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the popularity shocks of two state groups are correlated, and this correlation is inversely

proportional to the distance between the state groups. In this case if Ω is the variance-

covariance matrix of popularity shocks, thenΩii = σ2
ν andΩi j =

ρ2

Di, j
for i , j. Here param-

eter ρcorr accounts for correlation and Di j is the distance between state group i’s and state

group j’s centroids in units of 1000 kilometers (KM). The results of this exercise are reported

in Columns (9) and (10) of Table 6. I find that for Romney, Trump, and Clinton, the estimates

do not change significantly compared to baseline. For Obama, rally effectiveness becomes

insignificant but still preserves the same sign. Apart from spatial correlation, presence of

aggregate shocks can also lead to a correlation in popularity shocks. To mitigate this pos-

sibility, the variance-covariance matrix is parameterized to Ωii = σ2
ν + σ

2
agg and Ωi j = σ2

agg

for i , j. The estimates of this exercise are reported in Columns (7) and (8) of Table 6. I

find that the estimates for the 2012 and 2016 elections are not significantly different from

the baseline.

Table 7: Model Selection Tests

Election Year

2012 2016 Pooled

Baseline Model vs Non-Strategic Candidates 0.000595 0.000359 0.000477

(0.010123) (0.040219) (0.0207)

Baseline Model vs Max Win Prob 0.0545 0.0932 0.0739

(0.0613) (0.0875) (0.0533)

Observations 100 100 200

Standard errors are reported in parentheses.

Note: The table shows the results from model selection tests between strategic and non strategic model.

Moreover, It also shows the model selection test to infer whether candidates maximize winning probability

or expected sum of electoral college votes. Positive values indicate the baseline model performs better.

6.6 Model selection tests

I test three competing models: (a) candidates are myopic and unable to perform backward

induction perfectly; (b) candidates are non-strategic, neither observing nor anticipating

their opponents’ actions; and (c) candidates seek to maximize their probability of winning

rather than the total number of electoral college votes.

One key assumption I make is that candidates can execute backward induction flawlessly.
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(a) 2012 Planning Horizon Test
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(b) 2016 Planning Horizon Test
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Test Statistic 90% Confidence Interval 95% Confidence Interval

Figure 7: This figure shows results from conducting Vuong’s closeness test where the “Full Planning Horizon”

model (baseline model) is compared with models that have shorter planning horizons. A negative statistic indi-

cates that the baseline model performs better than the competing models. The x-axis shows the planning horizon

length and the y-axis shows the corresponding Vuong’s closeness test statistic.

This might be untrue if candidates are myopic.33 The second assumption is that candidates

make rally decisions strategically. Yet it is possible that candidates do not consider oppo-

nents’ rally decisions and base their rally decisions only on a state’s electoral payoff and

their popularity in the state. I test whether this is true or not.34

Myopic campaign strategy models assume that candidates consider future payoffs up to

D̃ days into the future. The payoffs candidates receive beyond D̃ are assumed to be zero. For

each planning horizon limit D̃, I re-estimate the model and then conduct Vuong’s closeness

test. The results of this exercise are reported in Figure 7. Myopic candidates will exhibit two

key features: (1) their campaign strategies correlate with one another and with popularity

only once the election period enters the planning horizon and not before it, and (2) a jump

in the intensity of rallies when the election enters the planning horizon. These behavioral

predictions allow us to determine whether candidates are myopic or not. Figure 7 reports

33In this context (i) myopic candidates, (ii) a voter base that is more attentive closer to election, or (iii) a voter

base with limited memory span (do not recall earlier rallies) will yield observationally equivalent campaign

strategy. Therefore, for the statistical test, it does not matter whether politicians are myopic or their target

population is, we should see some jump in campaign activity as the election approaches.
34While researchers have considered strategic and myopic behavior in sequential voting settings, they have

not studied a setting where these behavioral features are separable. For instance, in Spenkuch et al. (2018),

suppressing strategic behavior is identical to suppressing forward-looking behavior. Therefore, whether can-

didates are myopic or non-strategic when they vote on bills is unclear. By contrast, in the present setting, these

features are separable and can be individually tested.
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Vuong Stat by Day Bins−2016
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Figure 8: Vuong Statistic by Day Bins. The figure shows that candidates are strategic especially 10 days prior

to the election, while being non-strategic between 20 and 10 days before the election.

the results of this exercise. A negative point estimate implies that the baseline model (full

horizon model) performs better. The test statistics are not significantly positive. Moreover,

horizons of 5 and 10 days are significantly lower (at 90% level of significance) than the base-

line model.

I also test whether candidates make rally decisions strategically or not. For this purpose,

I construct a model in which candidates neither anticipate nor observe the opponent’s rally

decisions and only consider popularity, time until the election, and electoral college votes.

The results are reported in Table 7. The test statistic indicates that the strategic model per-

forms better. A deeper look at how the test statistic varies with time shows that candidates

are strategic 10 days before the election but non-strategic between 20 and 10 days before

the election. Both models explain earlier pre-election bins with similar precision. I also test

whether the model where candidates maximize their probability of winning performs bet-

ter than the one where candidates maximize the sum of electoral college votes. Vuong’s test

statistic fails to reject the sum of the electoral college votes model. The log-likelihood for

the sum of electoral college votes model is higher than that for the winning probability of

winning model.

7 Counterfactual Experiments

Cumulative Effect of Rallies: In this analysis, I evaluate electoral outcomes under two dis-

tinct scenarios. The first scenario, labeled “Only One Candidate Rallies,” permits only one
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candidate to conduct political rallies, thereby isolating the influence of that candidate’s cam-

paigning efforts by eliminating the opponent’s counter-campaigning response. The second

scenario, “No One Rallies,” predicts the electoral results when neither candidate holds ral-

lies. Comparing these two scenarios helps isolate the specific effect of a candidate’s total

rally decisions on election outcomes, such as vote shares and winning probabilities.35

The findings, presented in Panels (a)–(f) of Figure 9, reveal significant increases in vote

shares for all candidates. However, the impact of Trump’s rallies notably exceeds that of

Clinton’s and Obama’s. Specifically, Trump’s rallies led to a substantial 33% increase in his

probability of winning, whereas the rallies of other candidates did not significantly affect

their probability of winning. This suggests that Trump’s rallies were crucial, while those of

other candidates were not as impactful.

These findings contribute to the longstanding debate encapsulated by the question “Do

campaigns matter?” as discussed in the seminal studies such as (Lazarsfeld et al., 1968;

Berelson et al., 1986; Jacobson, 2015). My findings underscore that like widely studied cam-

paign instruments like TV ads, political rallies can also be a decisive tool for presidential

candidates, especially in competitive elections. Contrary to previous research suggesting a

minimal impact of presidential campaigns on electoral outcomes (Franz and Ridout, 2010;

Huber and Arceneaux, 2007; Jacobson, 2015), our findings align with political economy and

quantitative marketing literature that suggests substantial effects of presidential campaigns

on electoral results and voting behavior (Spenkuch and Toniatti, 2018; Gordon and Hart-

mann, 2013).

Campaign Response to Opponent: In this analysis, I estimate the number of rallies that

were held, or not held, as a strategic response to an opponent’s rallies. Specifically, I compare

the total number of rallies conducted—either nationally or within certain state groups—when

the opponent is also making rally decisions versus when the opponent does not hold any ral-

lies. This comparison provides an insight into how campaign strategies adjust in response to

the presence of an opponent. The results indicate significant strategic adjustments: Obama

35To estimate the standard error of these counterfactual outcomes, I generate a sample (of size M) of pa-

rameter values from the asymptotic distribution, assumed to be normally distributed with a mean equal

to the parameter estimates and a variance-covariance matrix provided by a consistent estimator of the pa-

rameters’ variance-covariance. For each sample, I compute outcomes under both “None Rally” and “i Ral-

lies”, using the same methodology as before. The standard errors are then calculated using the differences{
∆ym : ∆ym = ym

i Rallies
− ym

None rally

}M

m=1
.
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Figure 9: This figure shows the cumulative effect of a candidate’s rallies on their vote margin lead in Panels (a)–(c) and their probability of winning in Panels

(d)–(f). Estimates of number of rallies held or not held as a campaign response to the opponent’s rallies are shown in Panels (g)–(i).
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and Clinton conducted an additional 12.3 (s.e. = 3.45) and 13.14 (s.e. = 3.42) rallies, respec-

tively, in response to rallies held by Romney and Trump. Conversely, Trump held 3.5 (s.e. =

0.89) fewer rallies in response to Clinton’s campaigning, while Romney’s campaign strategy

did not alter the total number of his rallies. The findings, graphically illustrated in Pan-

els (g)-(i) of Figure 9, quantify the extent to which strategic considerations shape campaign

strategies.

Campaign Silence Laws: In this analysis, I introduce campaign silence periods ranging

from 1 to 8 days.36 This restriction modifies the continuation values for candidates during

active campaigning periods, influencing their strategic behavior. The effectiveness of the

campaign silence is contingent upon the total rallies held before its commencement, which

determines the level of accumulated popularity. A short campaign silence results in a slight

decay of this accumulated popularity, rendering the silence largely ineffective. Conversely,

a prolonged silence leads to significant popularity decay, markedly altering electoral out-

comes.

For each duration of campaign silence, I compare the electoral outcomes with the elec-

toral outcomes that would have been obtained if there had been no campaign silence. My

findings suggest that campaign silences are largely ineffective in less competitive elections.

However, in highly competitive elections, campaign silences can significantly impact out-

comes. State-specific parameter estimates indicate that the 2012 election was less compet-

itive than 2016. Notably, even in competitive elections, shorter periods of campaign silence

prove ineffective, as shown in Panels (a)-(d) of Figure 10.37

Spending Limits: In this analysis, I impose limits on the number of rallies each candidate

can hold, akin to spending limits in this context. Limits are set within a range from 20 to 120.

I then simulate the model and compare the equilibrium outcomes with a baseline scenario

with no rally limits.

My findings indicate that even when the imposed limits on rallies exceed the actual num-

ber of rallies candidates hold, there is a noticeable decrease in both the probability of win-

ning and vote shares across both election years. The decrease in these metrics is monotonic,

36For simplicity, this discussion limits the campaign silence to 8 days, though initially, periods of up to 30

days were considered. The impact of campaign silence on election results tends to increase slightly for 2016

and remains relatively stable for 2012.
37Furthermore, the influence on campaign strategy is minimal until the onset of the blackout period, due to

which I have omitted the figure.
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Figure 10: Campaign Silence Duration and Election Day Poll Margin for 2012 Presidential Elections. This figure provides estimates for changes in electoral outcomes when

campaign silences of varying duration are imposed. For each campaign silence duration, I calculate R’s probability of winning along with the corresponding confidence

intervals.
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eventually stabilizing at different levels for each year, as depicted in Panels (e)-(h) of Figure

10. Further analysis of equilibrium strategies shows that even if rally limits are higher than

the number of rallies held without any rally limits, they still suppress the number of rallies

throughout all periods. This reduction occurs because candidates, anticipating potential

future contingencies that may require intensive rallying, choose to conserve their limited

rally opportunities early on, even when these limits seem generous initially.38 Panels (i)–(l)

of Figure 10 present the results of this exercise.

8 Conclusion

This paper shows that political rallies can be persuasive, electorally pivotal, and challenging

to regulate, even in a consolidated democracy. I show this in two steps. In the first step,

the paper constructs a dynamic game where politicians compete against each other to stay

popular on election day. The game possesses a finite time horizon and a perfect information

structure. The combination of these features is sufficient for applying backward induction

to compute equilibrium conditional choice probabilities, which are unique. In this model,

stage games satisfy the Markov property, which is used to formulate a likelihood function

and estimate model parameters. This model allows for estimation in settings where only

one game is observed by using the stage games as a unit of observation.

The analysis of electoral effects reveals that Trump’s rallies significantly increased his

probability of winning by 33%, whereas the rallies of Romney, Clinton, and Obama did not

increase their probability of winning. Additionally, the persuasion rates of rallies compared

to television ads (DellaVigna and Kaplan, 2007; Spenkuch and Toniatti, 2018) demonstrate

that a single rally is more effective than a TV ad. However, due to the limited number of

rallies a candidate can realistically hold, their cumulative impact falls short of that of TV

ads. The study also evaluates policy-relevant counterfactual experiments, finding that short

campaign silences—commonly lasting only 1–2 days in many countries—are ineffective due

to their brief duration. Conversely, ostensibly nonbinding spending limits effectively re-

duce the influence of extensive campaigning on electoral outcomes.

38This behavior is absent in static models and only plays a role when one considers dynamic strategies.
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A Proofs

A.1 Proof for Proposition 2.1

Proof: First note that under assumption 2.1, 2.2, and 2.3 the relevant state variables for first

mover is cost shocks and current popularity and for second mover in addition to these two

first mover action is also a relevant state variable. Then consider period T, since popularity

shocks are normally distributed we can write:

E
[
VR,T+1(pT+1)|aRT, aDT, pT

]
=

K∑
k=1

ekEΦ
(
αRaRkT + αDaDkT + ρpT + δk

σν

)
, (A1)

where Φ() is the Standard Normal pdf. Note that
∑K

k=1 ekEΦ
(
αRaRkT+αDaDkT+ρpT+δk

σν

)
is bounded

by E. For D, E
[
VD,T+1(pT+1)| . . .

]
= E − E

[
VR,T+1(pT+1)| . . .

]
and it is also bounded. The

second mover’s option specific value function uisT is given as:

uisT(k, pT, a j f T) = −ci1 {k , 0} + βE
[
Vi,T+1(pT+1)|a j f T, k, pT

]
, (A2)

which is also finite. Note that aisT = arg maxk

{
uisT(k, pT, a j f T) + ϵi,k,s,T

}
which exists as each

of the numbers are finite. Moreover, it is unique with probability 1 otherwise we will have

two independent T1EV random variables satisfying an equality with positive probability.

Moreover, from McFadden (1989) we know that Prob(aisT = k) will take the standard multi-

nomial logistic form given by σisT(k; pT, a j f T) =
exp(uisT(k,pT ,a j f T))∑
l exp(uisT(l,pT ,a j f T)) . Similarly, for the first mover

the option specific value function is given by:

ui f T(k, pT) = −ci1 {k , 0} + β
K∑

l=0

σ jsT(l, pT, k)E
[
Vi,T+1(pT+1)|l, k, pT

]
. (A3)

Then with the same arguments one can show that σi f T(k; pT) =
exp(ui f T(k,pT))∑
l exp(ui f T(l,pT)) . Then the ex-

pected value for the second mover and first mover is given by:

Eϵis,T

[
VisT(l, pT, ϵis,T)

]
= log

 K∑
k=0

uisT(k, pT, l)

 + γ, (A4)

Eϵi f ,T

[
Vi f T(pT, ϵis,T)

]
= log

 K∑
k=0

ui f T(k, pT)

 + γ. (A5)
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This is true because the cost shocks are T1EV.39 Moreover, note that since uisT and ui f T are

bounded their respective expected value functions are also bounded because log(
∑

j exp(xk))

≤ log((K+1)exp(max j(xk)))=max j(xk)+log(K+1). Replacing xk with uisT(k) or ui f T(k) proves

the claim. The value function in period T is given by:

Vi,T(pT) = fi × ln
( K∑

k=0

exp
{
ui f ,t(k; pT)

})
+ (1 − fi) ×

K∑
k=0

[
σ j f ,T(k; pT) ln

( K∑
l=0

exp
{
uis,T(l; k, pT))

})]
+ γ.

(A6)

Note, this value function is also bounded because each individual term is bounded.

Suppose Vt+1 is bounded then with similar arguments uist(k, pt, a j f t) = −ci1 {k , 0} +

βE
[
Vi,t+1(pt+1)|a j f t, k, pt

]
is also bounded and so is ui f t = −ci1 {k , 0} + β

∑K
l=0 σ jst(l, pt, k)

E
[
Vi,t+1(pt+1)|l, k, pt

]
. Then the respective policy functions aist and ai f t also exist and are

unique almost surely. Moreover, the conditional choice probabilities take the formσist(k; pt, a j f t)

=
exp(uist(k,pt,a j f t))∑
l exp(uist(l,pt,a j f t))

and σi f t(k; pt) =
exp(ui f t(k,pt))∑
l exp(ui f t(l,pt))

. Given this we can show that the following

holds:

Eϵis,t

[
Vist(l, pt, ϵis,t)

]
= log

 K∑
k=0

uist(k, pt, l)

 + γ, (A7)

Eϵi f ,t

[
Vi f t(pt, ϵis,t)

]
= log

 K∑
k=0

ui f T(k, pt)

 + γ, (A8)

Vi,t(pt) = fi × ln
( K∑

k=0

exp
{
ui f ,t(k; pt)

})
+ (1 − fi) ×

K∑
k=0

[
σ j f ,t(k; pt) ln

( K∑
l=0

exp
{
uis,t(l; k, pt))

})]
+ γ.

(A9)

Given the above equation, Vit is also bounded using similar arguments that were used to

argue Vi,T is bounded. Then by induction argument the above holds for all t = 1, 2, . . . ,T.

39Note if −ϵk ∼ T1EV and independent then maxk∈{0,1,...,K}{δ̃k − ϵi f tk} ∼ Gumbel( µ = ln
∑

k exp(δ̃k), β = 1).

Where µ denotes the location parameter of a Gumbel Distribution and β denotes the scale parameter and the

mean is given by µ + βγwhere γ is Euler’s constant.
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A.1.1 Proof for Lemma 4.1

Recall X̃t = (At,Pt+1). Moreover, random vector At ∈ {0, 1, . . . ,K}2 and Pt+1 ∈ RK. In order

to derive this density we consider the following probability:

P
[
X̃t ∈ B|X̃t−1

]
=

∑
a∈{0,1,...,K}2

P [At = a,Pt+1 ∈ Ba|(At−1,Pt)] (A10)

The above decomposition is well defined because At is a discrete random variable. Note

that Pt+1 is contained in a set and not equal to a point here. Therefore the above probability

is not always zero. Moreover, B is a measurable subset of
{
{0, 1, . . . ,K}2 ×RK} and Ba ={

p ∈ RK : (a, p) ∈ B
}
. Also, in case ∄p ∈ RK s.t. (a, p) ∈ B then Ba = ∅, i.e. Ba is empty. The

corresponding probability will be 0. The sum appears because {0, 1, . . . ,K}2 is finite. Note

by model assumption on the popularity process the following holds:

P [Pt+1 ∈ Ba|(At = a,Pt)] =
∫

p∈Ba

f
(
p|At = a,Pt

)
dp (A11)

Where f (.|.) is the density of popularity. Also note that the equilibrium definesP [At = a|Pt] =

σt (At = a; Pt) Therefore, we can expressP
[
X̃t ∈ B|(At−1,Pt)

]
as followed:

P
[
X̃t ∈ B|X̃t−1

]
=

∑
a∈{0,1,...,K}2

P [At = a,Pt+1 ∈ Ba|(At−1,Pt)]

=
∑

a∈{0,1,...,K}2

P [Pt+1 ∈ Ba|(At = a,Pt,At−1)]P [At = a|Pt,At−1]

=
∑

a∈{0,1,...,K}2

P [Pt+1 ∈ Ba|(At = a,Pt)]P [At = a|Pt]

=
∑

a∈{0,1,...,K}2

(∫
p∈Ba

f
(
p|At = a,Pt

)
dp

)
σt (At = a; Pt)

=
∑

a∈{0,1,...,K}2

∫
p∈Ba

f
(
p|At = a,Pt

)
σt (At = a; Pt) dp

⇒

∫
x∈B
ψt(x|Xt−1)dx =

∫
(a,p)∈B

f
(
p|At = a,Pt

)
σt (At = a; Pt) d(a, p)

(A12)

The second equality holds by law of total probability. The third equality holds by modeling

assumption 2.1. The fourth equality is substituting P [Pt+1 ∈ Ba|(At = a,Pt)] using assump-

tion 2.1. The fifth and sixth inequality is a re-writing of the integral.

Q.E.D.
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A.1.2 Proof for Proposition 4.1

Consider the following probability for a measurable set B ⊂
{
{0, 1, . . . ,K}8 ×R4K

}
:

P
[(

X̃4d, X̃4d−1, X̃4d−2, X̃4d−3

)
∈ B

∣∣∣∣∣X̃4d−4

]
=

∫
x1

P
[(

X̃4d, X̃4d−1, X̃4d−2

)
∈ Bx1 |X4d−3 = x1

]
ψ4d−3(x1|X̃4d−4)dx1

=

∫
x1,x2

P
[(

X̃4d, X̃4d−1

)
∈ Bx1,x2 , X̃4d−2 = x2|X̃4d−3 = x1

]
ψ4d−3(x1|X̃4d−4)d(x1, x2)

=

∫
x1,x2

P
[(

X̃4d, X̃4d−1

)
∈ Bx1,x2 |X̃4d−2 = x2

]
ψ4d−2(x2|x1)ψ4d−3(x1|X̃4d−4)d(x1, x2)

...

=

∫
x1,x2,x3,x4∈B

4∏
l=1

ψ4(d−1)+l (xl|xl−1)

∣∣∣∣∣∣
x0=X4d−4

d(x1, x2, x3, x4)

Finally we have

⇒ P
[(

X̃4d, X̃4d−1, X̃4d−2, X̃4d−3

)
∈ B

∣∣∣∣∣X̃4d−4

]
=

∫
(al,pl+1)l=1,...,4∈B

 4∏
l=1

σ4(d−1)+l(al; pl)

 ×
 4∏

l=1

f
(
pl+1|al, pl

) d
(
(al, pl+1)l=1,...,4

) (A13)

Where p1 = P3d−4. We wish to evaluate the following the probability, for an arbitrary mea-

surable set C ⊂ {{0, 1, . . . ,K}8 × RK
}. Note that BC = C × R3K is a measurable subset of{

{0, 1, . . . ,K}8 ×R4K
}

under the respective product sigma-algebra and the following holds

P [Xd ∈ C|Xd−1] = P
[(

X̃4d, X̃4d−1, X̃4d−2, X̃4d−3

)
∈ BC

∣∣∣∣∣Xd−1

]
= P

[(
X̃4d, X̃4d−1, X̃4d−2, X̃4d−3

)
∈ BC
|(P4d−3,A4d−4)

]
= P

[(
X̃4d, X̃4d−1, X̃4d−2, X̃4d−3

)
∈ BC
|X̃4d−4

]
=

∫
(al,pl+1)l=1,...,4∈BC

 4∏
l=1

σ4(d−1)+l(al; pl)

 ×
 4∏

l=1

f
(
pl+1|al, pl

) d
(
(al, pl+1)l=1,...,4

)

=

∫
x∈C


∫

p2,p3,p4∈R3K

 4∏
l=1

σ4(d−1)+l(al; pl)

 ×
 4∏

l=1

f
(
pl+1|al, pl

) d(p1, p2, p3)

 d(x)

(A14)
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Table A1: Candidates’ Appearances

Romney Obama Trump Clinton

2012 2012 2016 2016

Address/Church Visit 13 15 17 17

Debate Related 12 9 8 8

Fundraiser 51 31 39 39

Interview/Meet/Discuss 12 12 34 12

Rally/Event/Speech 106 92 130 81

Stop/Tour 41 58 21 29

Travel 17 11 2 3

Number of Rallies retained 99 89 119 71

Number of Rallies dropped 7 3 11 10

Note: The table shows summary statistics for raw data obtained from

Democracy in Action. Here I show the categories into which candidate ap-

pearances were categorized. This data contains classification for last 120

days rather than 100 days. The category Rally/Event/Speech is the largest

category that I define as Rallies. I also show the number of rallies that were

dropped and retained.

Where x = (a1, a2, a3, a4, p5) and p1 = P4d−3. The first equality holds by Chapman-Kolmogorov

equation for this setting. The second equality holds because Xd−1 has X̃4d−4 as its component

and the corresponding probability is well defined by equation A13. The following equality

is substitution of the expression found in A13. The last equality is a re-writing of the pre-

ceding integral. The probability distribution of Xd ∈ C is nothing but the marginalization of(
X̃4d, X̃4d−1, X̃4d−2, X̃4d−3

)
along the dimensions of P4d−2, P4d−1 and P4d.
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B Data Appendix

B.1 Types of Events Held

The group of activities I am interested in involves a candidate (i) holding a rally, (ii) giving a

speech, or (iii) organizing a special event. I call these activities a political rally. In various me-

dia reports, most of these organized special events (such Focus events, Early Vote events, Get

out Vote events, etc.) are reported as rallies, or there is evidence that the candidate delivered

a speech to voters. For instance, consider 2004 elections— even though currently not part

of my empirical application. There are events called Focus Events used by George W. Bush’s

presidential campaign. An example of such entry in the calendar is regarding October 20,

2014, Rochester Airport rally. The entry in Democracy in Action is given as ’GWB partici-

pates in a “Focus on the Economy with President Bush” event at Rochester Aviation hangar

in Rochester, MN ’. The same event was also reported as a rally http://news.minnesota.

publicradio.org/features/2004/10/20_ap_bushrochester/. Another example for a

set of entries that are akin to rallies but were entered as campaign events are Early Vote

Events. Consider the October 21 Early Vote Event in Cleveland, Ohio by Hilary R. Clinton. In

the recording— link: https://www.youtube.com/watch?v=abbxQn-9DBY— of the event

Hilary R. Clinton can be seen delivering a speech to a large gathering of voters.

In the model, candidates can hold at most one rally in a given period, but candidates

sometimes visit multiple states for holding rallies. Therefore, I define a period as a quarter

of the day and assign periods to observed rallies by using the chronological information for

all activities. First, every day is divided into 4 sub-periods. To achieve this, I need to make

sure there are at most four rallies in a day. I had to remove nine rallies for being a) late-

night/post-midnight rally on the last day b) rallies in the same state consecutively.40 I also

removed rallies from states where at most two rallies were held. States with infrequent rallies

are typically strongholds, where campaign events have negligible influence on electoral out-

comes. Excluding these states from the structural estimation does not introduce substantial

bias, as demonstrated clearly in Table A5.

Second I assign periods to each rally by carrying out the following steps. I calculate the

total number of appearances a candidate makes in a day (let us say n). If a rally was ith

40Not all such rallies were removed only four such rallies were removed to ensure at most four rallies in a day.
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appearance made by the candidate, then it received a score of i/n. Then periods within a

day are assigned in the following manner: 1) If i/n ≤ 0.25, it is considered the first period

within the day. 2) If 0.25 < i/n ≤ 0.5, it is considered the second period within the day. 3) If

0.5 < i/n ≤ 0.75, it is considered the third period within the day. 4) If 0.75 < i/n ≤ 1, it is

considered the fourth period within that day. If two rallies receive the same periods, the one

with lower i/n receives a lower period if the lower period is available otherwise the higher

i/n receives a higher period. Whenever, such ties occurred one of the periods were available.

Finally the periods in the model are calculated as ‘model period’ = 4 · ‘days before election’ +

‘period within the day’.

Table A1 shows the total number of activities that were available for 120 days before the

election. For the main analysis and model estimation, I focus on activities in the last 100

days. These activities are categorized into groups. The category “Rally/Event/Speech” are of

interest to this paper. The number of rallies retained after removing stronghold state rallies

and counting consecutive rallies in the same state as one rally is also shown here.

B.2 Last minute changes to rally schedules by U.S. Politicians

Table A2 documents several instances in which U.S. political figures—including presidents,

governors, senators, and presidential candidates—cancelled, rescheduled, or added rallies

at the last minute. These changes were often made within 24 hours of the scheduled event

and were driven by evolving conditions such as protests, weather, public health, or strate-

gic shifts in campaign focus. This institutional flexibility highlights that rally schedules are

not binding commitments, but rather contingent plans subject to real-time revision. Ac-

cordingly, the modeling framework in the main text treats the strategic environment as a

game without commitment, where candidates retain the option to revise their rally choices

period-by-period based on current conditions. The table provides empirical support for this

assumption.
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Table A2: Notable Cancellations, Rescheduling, or Additions of U.S. Political Rallies

Name Event Date Change Date Reason for Change Location/Event

Donald Trump Mar 11, 2016 Mar 11, 2016 Cancelled due to large protests University of Illi-

nois, Chicago

Donald Trump Oct 2, 2020 Oct 2, 2020 Cancelled after COVID-19 diagnosis Sanford, Florida

Donald Trump Apr 20, 2024 Apr 20, 2024 Cancelled due to storm weather Wilmington,

North Carolina

Donald Trump Jun 20, 2020 Jun 12, 2020 Rescheduled rally to avoid June-

teenth controversy

Tulsa, Oklahoma

Joe Biden Jul 17, 2024 Jul 17, 2024 Cancelled after testing positive for

COVID-19

Las Vegas, Nevada

Hillary Clinton Sep 12, 2016 Sep 11, 2016 Cancelled multi-day campaign trip

after pneumonia diagnosis and

health incident at 9/11 memorial

California (multi-

ple cities)

Hillary Clinton Jul 8, 2016 Jul 8, 2016 Cancelled rally with Biden out of

respect for victims of Dallas police

shooting

Scranton, Penn-

sylvania

Hillary Clinton Nov 2, 2016 Nov 2, 2016 Cancelled rally after fatal shootings of

two police officers

Des Moines, Iowa

Barack Obama Oct 29–30, 2012 Oct 29, 2012 Cancelled due to Hurricane Sandy re-

sponse

Multiple East

Coast campaign

stops

Mitt Romney Sep 16, 2012 Sep 16, 2012 Cancelled due to fatal small plane

crash at event site

Pueblo Weisbrod

Aircraft Museum,

Colorado

Mitt Romney Oct 28, 2012 Oct 28, 2012 Cancelled campaign events due to

Hurricane Sandy

Virginia Beach,

Virginia

George W. Bush Sep 11, 2001 Sep 11, 2001 All events cancelled after 9/11 attacks Nationwide

Tim Walz (Gov.) Sep 9 2024 Sep 9, 2024 Cancelled rally to respond to wildfires Reno, Nevada

Phil Murphy (Gov.) Jan 16 2019 Jan 16 2019 Phil Murphy cancels Paterson town

hall at mosque amid protests over

Jameek Lowery death

New Jersey

Doug Burgum (Gov.) Jun 7, 2023 Jun 5, 2023 Last-minute rally to launch presiden-

tial campaign

Fargo, North

Dakota

Amy Klobuchar (Sen.) Mar 1, 2020 Mar 1, 2020 Cancelled rally due to protests over

past prosecution

St. Louis Park,

Minnesota

Notes: This table lists last-minute rally cancellations, additions, and rescheduling, compiled through an extensive

search of news reports referencing changes to scheduled campaign events. The entries are not exhaustive; additional

changes may have occurred for which information is not readily available. Coverage of such changes is particularly

limited for earlier years, such as 2012, and likely omits some rally adjustments from that period.
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C Simulated Likelihood Procedure

C.1 Simulated Likelihood

In order to calculate λθd
(
Xd

∣∣∣Xd−1

)
we need to execute an integration over R3K. This ex-

ercise is not feasible analytically and therefore we use a Quasi Monte-Carlo scheme that

relies on Sobol sequence. We use M = 210
× K points to evaluate λθd (Xd

∣∣∣Xd−1). Lets de-

note the set of probability integral transforms of 3K dimensional Sobol sequence, till M, by

ζ =
{
ζm = (ζm

1,1, . . . , ζ
m
1,K, . . . , ζ

m
3,1, . . . , ζ

m
3,K)

}M

m=1
41. Based on ζ we can define the following set

of plausible popularity values:

p̂m,d
1,k = Pd,1,k (C1)

Here Pd,1,k is the observed popularity on day d in state k. For l = 1, 2, 3 I define the following

p̂m,d
l+1,k = αR1{AR,d,l == k} + αD1{AD,d,l == k} + ρp̂m,d

l,k + δk + σνζ
m
l,k (C2)

Lastly call p̂m,d
5,k as the predicted popularity on day d at sub period 1 for the Sobol draw m. For

each draw m we can construct a predicted popularity value conditioned on Pd,1,Ad,1, . . .Ad,4.

This gives us a plausible mean for observed popularity on day d + 1 sub-period 1. This

predicted popularity is given by:

p̂m,d
5,k = αR1{AR,d,4 == k} + αD1{AD,d,4 == k} + ρp̂m,d

4,k + δk (C3)

Therefore we have a set of plausible popularity valuesPd =
{
p̂m,d = (p̂m,d

1,1 , . . . , p̂
m,d
1,K , . . . , p̂

m,d
5,1 ,

. . . , p̂m,d
5,K )

}M

m=1
for each d and it can be used to approximate λθd

(
Xd

∣∣∣Xd−1

)
as followed:

λθd
(
Xd

∣∣∣Xd−1

)
≈λ̂θd

(
Xd

∣∣∣Xd−1

)
≈

1
M

M∑
m=1


 4∏

l=1

σ̂4(d−1)+l

(
Ad,l; p̂m,d

l

) × 1
σK
ν

 K∏
k=1

ϕ

Pd+1,1,k − p̂m,d
5,k

σν



 (C4)

Where p̂m,d
l = (p̂m,d

l,1 , . . . , p̂
m,d
l,K ), the function σ̂4(d−1)+l(Ad,l; p̂m,d

l ) is approximate probability of

observing action profile Ad,l in period 4∗(d−1)+ l. This term is evaluated by using equations

F10 and F8 in the Online Appendix. Moreover, ϕ(.) is the p.d.f. of standard normal distribu-

tion. The density λ̂θ
(
Xd

∣∣∣Xd−1

)
provides a close approximation of λθ

(
Xd

∣∣∣Xd−1

)
. If ζ were

drawn from a standard normal distribution instead, call this density (λ̃θ
(
Xd

∣∣∣Xd−1

)
) then it

is not hard to see that λ̃θ
(
Xd

∣∣∣Xd−1

)
→ λ̃θ

(
Xd

∣∣∣Xd−1

)
as M → ∞. The error of this integral

41Here ζm
l,k isΦ−1

(
um

Sobol,l,k

)
, where um

Sobol,l,k is the (3(l−1)+k)th component of the mth point of 3K dimensional

Sobol sequence. Note thatΦ−1 is the probability integral transform for the standard normal distribution.
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would vanish to zero with a rate of
√

M. However, we are using QMC, which in practice is

known to provide better convergence rate. Finally, the approximate log-likelihood is given

by:

ℓℓ(θ; X0,X1, . . . ,XD̄) ≈ ℓ̂ℓ (θ; X0,X1, . . . ,XD̄)

≈
1
D̄

D̄∑
d=1

log

 1
M

M∑
m=1


 4∏

l=1

σ̂4(d−1)+l

(
Ad,l; p̂m,d

l

) × 1
σK
ν

 K∏
k=1

ϕ

Pd+1,1,k − p̂m,d
5,k

σν




 (C5)

D Additional Robustness Test

D.1 Model with Commitment: Scheduling Rallies a Week in Advance

To test a version of the model in which candidates must commit to scheduling rallies a

week in advance, we modify the popularity transition equations accordingly. In this set-

ting, candidates form forecasts of candidate R’s popularity 28 periods (one week) into the

future based off opponent’s committed schedules and current popularity shocks. After ev-

ery period candidates update their forecast of week-ahead popularity based off their infor-

mation set: their rally schedule, opponent rally schedule, and current popularity shocks for

all states. Formally, in the beginning of period t, the information set of both players is given

by {{aR,s, aD,s}
t+27
s=t , pt}. Here {aR,s, aD,s}

t+27
s=t is the rally schedule of candidates from period t to

period t + 27. Note, that the candidates do not require to track rallies that took place before

period t since, that information of its net-outcome is contained within the current observed

popularity. Candidates choose ai,t+28 in period t given the information set.

Let the current period be t. Then the transition equation for the forecasted popularity in

period t + 29 for a forecast taken at period t + 1, given the information set in period t + 1 is

given by:

Et+1pk,t+29 = ρ
29
· pk,t +

28∑
s=0

ρ28−s

δk +
∑

i∈{R,D}

αiai,k,t+s

 + ρ28σννk,t+1

⇒ Et+1pk,t+29 =
∑

i∈{R,D}

αiai,k,t+28 + ρEtpk,t+28 + δk︸                                 ︷︷                                 ︸
≡Etpk,t+29

+ρ28σννk,t+1︸     ︷︷     ︸
≡shock in t

, (D1)

where Etpk,s denotes the period s popularity forecast taken in period t based on period t

information set. This information set includes all scheduled rallies up to period s and any

shocks realized by period t.
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The recursive form above helps reduce the dimensionality of the state space. Rather than

tracking the full schedule of rallies directly, we summarize their influence through the fore-

casted popularity path, which internalizes the effects of scheduled rallies on future popular-

ity.

Note that under this commitment model, decision-making concludes in period T, while

the election occurs in period T + 29. The payoff that candidates expect to receive at time

T + 1 is therefore based on this forecasted popularity trajectory and is given by:

VT+1

(
pT,{aR,T+s, aD,T+s}

28
s=0, νT+1

)
=

ET+1

 K∑
k=1

ekE · 1

ρ29pk,T +

28∑
s=0

ρ28−s

 ∑
i∈{R,D}

αiai,k,T+s + δk + σννk,T+s+1

 > 0




=

K∑
k=1

ek · E ·Φ

 ET+1pk,T+29

σ
√∑27

s=0 ρ
2s


≈

K∑
k=1

ek · E ·Φ


√

1 − ρ2 · ET+1pk,T+29

σ

 ≡ VT+1(ET+1pk,T+29).

(D2)

The first equality defines VT+1 as the expected sum of electoral college votes that candi-

date R can win in period T+1, conditional on the information set at T+1, incorporating the

scheduled actions over the next 28 periods and the popularity level at period T.42

The second equality follows from the definition of the forecasted popularity ET+1pk,T+29.

It also uses the fact that the random component follows a multivariate normal distribution

N(0, I28), which is affine invariant under the transformation matrixΩ, where

Ωss = ρ
28−sσν, Ωss′ = 0 for s , s′.

This allows the sum of shocks to be treated as a normal variable with variance σ2 ∑27
s=0 ρ

2s,

leading to the cumulative normal distribution functionΦ(·). The final approximation uses a

closed-form simplification under the assumption of geometric decay in the autoregressive

structure.

The timing of decisions and order of information revelation remains the same, however

the state variables change in value functions. Instead of tracking current popularity candi-

dates track forecasted popularity defined in Equation D1. Instead of tracking the current

42These payoffs are not discounted using a factor of β28, since no decision is made after this period. I also

estimate the case where these payoffs are discounted, as shown in columns (7) and (8) of Table A3, and find that

the estimates do not change significantly but the model fit worsens. As a result I report the non-discounted

payoff version in the main text of the paper.
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rally of the first mover, the second mover candidate tracks rallies scheduled for period t+ 28

(a j f ,t+28). Finally, in period t candidates do not make decisions for rallies to be held in pe-

riod t but rather in period t + 28. The second mover and first mover option-specific value

functions are expressed in the model as

uis,t(k; l,Etpk,t+28) = −c j × 1{k , 0} − ϵ js,t,k

+ βEt

[
V j,t+1(Et+1pt+29)

∣∣∣a jt+28 = k, ait+28 = l,Etpk,t+28

]
,

(D3)

ui f ,t(k;Etpk,t+28) =
K∑

l=0

uis,t(k; l,Etpk,t+28) · σ js,t
(
l; k,Etpk,t+28

)
, (D4)

where σ js,t is equilibrium choice probability of candidate j when they are the second mover.

The equilibrium conditional choice probabilities and value functions then can be expressed

as,

Vi,t(Etpk,t+28) = fi × ln
( K∑

k=0

exp
{
ui f ,t(k;Etpk,t+28)

})
+ (1 − fi) ×

K∑
k=0

[
σ j f ,t(k; pt) ln

( K∑
l=0

exp
{
uis,t(l; k,Etpk,t+28))

})]
+ γ

, (D5)

σi f ,t(k;Etpk,t+28) =
exp

(
ui f ,t(k;Etpk,t+28) − ui f ,t(0;Etpk,t+28)

)
1 +

∑K
l=1 exp

(
ui f ,t(l;Etpk,t+28) − ui f ,t(0;Etpk,t+28)

) , (D6)

σis,t(k; l,Etpk,t+28) =
exp

(
uis,t(k; l,Etpk,t+28) − uis,t(0; l,Etpk,t+28)

)
1 +

∑K
q=1 exp

(
uis,t(q; l,Etpk,t+28) − uis,t(0; l,Etpk,t+28)

) . (D7)

The likelihood is constructed following similar steps as in the main model. However, the

transition densities now incorporate both day d−1 and day d−7 to compute the probabilities

of observing rallies and poll margins on day d. Because rally decisions are made one week

in advance, candidates observe shocks on day d−7 and form expectations about the polling

outcomes they will face on day d. As a result, poll margins on day d are influenced not only

by their autoregressive dependence on day d−1, but also by rally decisions made on day d−7

in response to polls observed on day d−7.
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D.2 Other Robustness Tests

Table A3: Additional Robustness Tests

First Mover Prob First Mover Prob Total EC Votes Schedule Rallies Alt. State Groups Raw Polls Last 50 Days

f = 0.33 f = 0.67 E = 157 discounted elec. payoff Ohio in MW

Parameters 2012 2016 2012 2016 2012 2016 2012 2016 2012 2016 2016 2012 2016

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

αR 0.101 0.0836 0.101 0.077 0.105 0.0867 0.108 0.0946 0.0208 0.0917 0.0367 0.0915 0.0692

(0.0227) (0.0154) (0.0249) (0.0142) (0.0278) (0.0229) (0.0275) (0.0176) (0.00343) (0.0211) (0.011) (0.023) (0.0161)

αD -0.0422 -0.0742 -0.0562 -0.062 -0.0379 -0.0767 -0.0604 -0.0658 -0.0117 -0.0592 -0.11 -0.0454 -0.0756

(0.0135) (0.0151) (0.0179) (0.0132) (0.0135) (0.0217) (0.0199) (0.0137) (0.00254) (0.0117) (0.028) (0.0159) (0.0187)

ρ 0.99 0.991 0.992 0.99 0.99 0.988 0.993 0.991 0.992 0.99 0.993 0.991 0.992

(0.002) (0.001) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.002) (0.001)

σ 0.147 0.16 0.147 0.16 0.146 0.161 0.135 0.145 0.0433 0.17 0.283 0.135 0.145

(0.0143) (0.0148) (0.0145) (0.0148) (0.0143) (0.0151) (0.0142) (0.0131) (0.00348) (0.0208) (0.0197) (0.0119) (0.01)

cR 2.9 2.36 2.85 2.43 2.44 2.01 2.6 2.32 2.77 2.47 2.16 2.73 2.02

(0.287) (0.208) (0.278) (0.201) (0.238) (0.212) (0.25) (0.208) (0.263) (0.204) (0.212) (0.347) (0.315)

cD 2.83 3.25 2.88 3.22 2.59 2.85 2.73 3.06 2.8 3.15 3.47 2.83 3.03

(0.206) (0.259) (0.202) (0.256) (0.175) (0.251) (0.189) (0.251) (0.178) (0.258) (0.269) (0.279) (0.33)

Fixed Effects:

Cost

Poll Margins

L̄L -6.562 -6.5462 -6.5805 -6.5723 -6.8004 -6.7846 -6.7832 -6.4989 -1.4889 -6.8787 -10.051 -7.4172 -7.8602

Observations 100 100 100 100 100 100 93 93 100 100 100 50 50

a Note: The table shows estimates for model parameters under 3 modifications. Columns (1) and (2) set first mover probability f = 0.33 for the republican

candidate to be the first mover. Columns (3) and (4) set first mover probability f = 0.67 for the republican candidate to be the first mover. Columns (5) and (6)

calibrate E = 157. Columns (7) and (8) estimate the model where candidates schedule rallies one week in advance and the electoral payoffs are discounted by

β28 to account for the fact that elections take place a week after (28 periods later) the period rallies are scheduled. Columns (9) and (10) estimate the model the

specification where Ohio is made the part of Midwest state group rather than Northeast state group. Column (11) reports estimates for 2016 when simple raw

averages of individual poll results are used to construct popularity. Columns (12) and (13) report estimates when the model is estimated over the last 50 days

to test whether poll-frequency influences parameter estimates. The standard errors have been computed by using observation wise gradient and likelihood

hessian. I use HAC estimation for this purpose.
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Supplemental Appendix: Not For Publication

E Monte-Carlo Experiments

E.1 OLS Estimation and Bias

A natural benchmark to consider is a reduced-form OLS regression that relates next-day

polling margins to current-day popularity and rally activity. Specifically, one might estimate:

pk,d+1 = α
OLS
R NR,kd + α

OLS
D ND,kt + ρ

OLSpkd + δk + ν̃k,d+1, (A.2)

where pk,d is the Republican candidate’s polling margin in state k on day d, and Ni,kd denotes

the total number of rallies by candidate i ∈ {R,D} in state k on day d. This regression mirrors

the structure of the popularity evolution equation in the model (Equation 2.1), and—at first

glance—may seem like a valid approach for estimating the structural parameters αR and αD.

However, Equation A.2 does not yield consistent estimates of the rally effects. In the struc-

tural model, rallies and popularity evolve at a sub-daily frequency (four sub-periods per

day), and candidates make rally decisions at each sub-period. While each decision precedes

that sub-period’s popularity shock, the total number of rallies on day d aggregates over all

sub-periods. Likewise, the observed poll margin pk,d+1 reflects cumulative effects of all ral-

lies and all within-day shocks. Consequently, even if each rally decision is uncorrelated with

the shock in its own sub-period, the daily sum of rallies is correlated with the total shock

realized over the day.

This correlation violates the OLS exogeneity assumption. The composite error term νk,d+1

in Equation A.2 accumulates unobserved innovations that are not orthogonal to the aggre-

gated rally indicators Ni,kd. Intuitively, on days when realized shocks are more favorable

(e.g., random boosts in candidate support), more rallies are likely to occur or appear more

effective—creating a spurious upward correlation. Conversely, campaigns may reduce rally

activity on bad-shock days, leading to downward bias. Either way, the independence as-

sumption required for OLS consistency fails.

To illustrate the implications of this bias, I simulate data using the structural model with

known parameter values and estimate Equation A.2 via OLS. Table A4 reports the results for

varying persistence levels in the underlying AR(1) process. For example, when ρ = 0.99,
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the true values of αR and αD are both 0.08, but OLS estimates are consistently biased down-

ward—typically closer to 0.05–0.07. The table also shows that the bias becomes more severe

when persistence is lower (e.g., ρ = 0.85), reflecting stronger attenuation due to less pre-

dictable popularity dynamics.

These results confirm that OLS underestimates the true effects of rallies and demonstrate

the importance of using the structural likelihood, which correctly integrates over unob-

served within-day popularity states. The transition density in Lemma 4.1 and the likelihood

function derived in Section 4 explicitly resolve the endogeneity.

Table A4: OLS v. Model

Panel A: Monte-Carlo for rho = 0.85

Parameter Name N: Sample Size True Value OLS Bias Model Bias OLS MSE Model MSE

αR 40 0.08 -0.014 0.015 0.019 0.005

αR 80 0.08 -0.015 0.010 0.008 0.002

αR 120 0.08 -0.025 0.004 0.006 0.003

αR 160 0.08 -0.023 0.004 0.005 0.002

αD 40 -0.08 0.017 -0.004 0.018 0.005

αD 80 -0.08 0.007 -0.009 0.009 0.003

αD 120 -0.08 0.017 -0.010 0.008 0.003

αD 160 -0.08 0.012 -0.003 0.005 0.002

ρ 40 0.85 -0.030 -0.027 0.003 0.003

ρ 80 0.85 -0.015 -0.014 0.001 0.001

ρ 120 0.85 -0.010 -0.010 0.001 0.001

ρ 160 0.85 -0.007 -0.007 0.000 0.000

Panel B: Monte-Carlo for ρ = 0.99

Parameter Name N: Sample Size True Value OLS Bias Model Bias OLS MSE Model MSE

αR 40 0.08 0.003 -0.002 0.027 0.016

αR 80 0.08 -0.006 -0.002 0.012 0.007

αR 120 0.08 -0.010 0.000 0.008 0.004

αR 160 0.08 -0.012 -0.002 0.006 0.003

αD 40 -0.08 0.008 -0.003 0.025 0.012

αD 80 -0.08 -0.010 -0.004 0.012 0.006

αD 120 -0.08 0.001 -0.003 0.011 0.005

αD 160 -0.08 -0.005 -0.002 0.007 0.003

ρ 40 0.99 -0.027 -0.017 0.001 0.001

ρ 80 0.99 -0.012 -0.009 0.000 0.000

ρ 120 0.99 -0.007 -0.006 0.000 0.000

ρ 160 0.99 -0.005 -0.005 0.000 0.000

Notes: This table reports the average OLS estimates of Equation (A.2) across 200 simulations for each value of the persistence parameterρ and

sample size N. Simulated data are generated using the structural model with true parameter values αR = αD = 0.07 and ρ ∈ {0.85, 0.95, 0.99},

the other values are given in text. Despite rally decisions being made before sub-period shocks are realized, OLS estimates are biased due to

the correlation between the total number of rallies and accumulated within-day popularity shocks—an artifact of polling data being observed

only once per day. The results illustrate that OLS fails to recover structural parameters even under ideal simulated conditions.
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E.2 Assessing Effects of Removing Stronghold States

Table A5: Assessing impact of removing stronghold states

Case 1 Case 2 Case 3 Case 4

Parameter DGP Est DGP Est DGP Est DGP Est

αR 0.084 0.085 0.084 0.087 0.084 0.089 0.084 0.088

αD -0.074 -0.074 -0.074 -0.077 -0.074 -0.08 -0.074 -0.077

ρ 0.98 0.976 0.98 0.977 0.98 0.977 0.98 0.979

cR 1.36 1.386 1.36 1.385 1.36 1.378 1.36 1.378

cD 1.26 1.274 1.26 1.269 1.26 1.272 1.26 1.264

δ1 -0.007 -0.009 -0.007 -0.008 -0.03 -0.034 -0.03 -0.032

δ2 0.007 0.008 0.007 0.008 0.03 0.033 0.03 0.029

σ 0.16 0.159 0.16 0.159 0.16 0.159 0.16 0.159

c1 0.05 0.04 0.05 0.043 0.05 0.042 0.05 0.055

Notes: This table presents results from a Monte Carlo simulation designed to evaluate the

robustness of parameter recovery when stronghold states are excluded from estimation.

Data are generated from a four-state model where two states are strongholds (character-

ized by large drift magnitudes) and two are swing states. The estimation is then conducted

on a reduced two-state model using only the swing states, mirroring the empirical strat-

egy in the paper. Case 1 has EC configuration as e1 = 2/6, e2 = 2/6, e3 = 1/6, and e4

while drift configuration is δ1 = −0.2, δ2 = 0.2, δ3 = −0.007, and δ4 = 0.007, that is two

large stronghold states and two small swing states. Case 2 deviates by modifying e2 = 1/6

and e3 = 2/6, that is one large and one small swing states and same for stronghold state.

Case 3 deviates from Case 1 by setting δ3 = −0.03 and δ4 = 0.03, that is the competi-

tiveness of swing states is lowered. Finally, case 4 deviates by setting e2 = 1/6, e3 = 2/6,

and δ3 = −0.03 and δ4 = 0.03. That is combining the features of Case 2 and Case 4. The

estimates for rally effectiveness, costs, persistence, and drifts remain close to their true

values in all settings, demonstrating that excluding stronghold states does not materially

bias parameter estimates and that identification is driven by strategic variation in com-

petitive environments.

To assess whether excluding stronghold states biases the estimation of key model parame-

ters, I conduct a set of Monte Carlo experiments based on a four-state data-generating pro-

cess (DGP). In each simulation, two of the states are designed to be strongholds—characterized

64



by large drift magnitudes—which render the probability of electoral flipping due to rallies

effectively zero. The remaining two states are swing states with comparatively smaller drifts,

where campaign efforts are potentially more consequential.

Data are generated from this full four-state model, and in line with patterns observed in

the actual data, one or two rallies are allowed to occur in the stronghold states. To achieve

this empirically realistic rally distribution, state-specific costs were calibrated accordingly.

Estimation is then performed on a two-state version of the model, discarding the stronghold

states entirely. This mirrors the main empirical strategy in the paper.

Across 50 Monte Carlo replications, the mean parameter estimates from the two-state

estimation are remarkably close to the true DGP values. Table A5 summarizes the results

for four different configurations. The first two cases simulate low-drift (more competitive)

swing states, with drift magnitudes of δ = ±0.007 (implying long-run averages of roughly 0.7

percentage points). The latter two simulate high-drift (less competitive) swing states, with

drifts of δ = ±0.03 (implying long-run averages of roughly around 3 percentage points). For

each drift setting, I consider two electoral college distribution: (i) both stronghold states are

large and both swing states are small, and (ii) one large and one small stronghold state along

with with one large and one small swing state.

The key takeaway is that removing stronghold states—defined by one candidate have

strong lead over the other and at most two rallies—does not compromise parameter re-

covery. In all configurations, the estimates for effectiveness, costs, persistence, and drift

remain stable and close to their true counterparts. This supports the validity of excluding

stronghold states in the main analysis and confirms that the model is primarily identified

off strategic variation in competitive states.

E.3 Assessing Effects of Grouping States

To evaluate whether coarsening states into regional groups biases the structural estimates, I

conduct Monte Carlo simulations based on grouping a four-state version of the model into

a two-state version of the model. The data-generating process (DGP) specifications for each

simulation are provided in Tables A6 and A7. I examine two main environments: (i) a high-

drift case where elections are more lopsided within states, and (ii) a low-drift case where

states are more competitive.
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For each environment, I consider four grouping strategies for the purpose of estimation:

(a) Combine one large and one small state (based on electoral college votes), and mix

Republican-leaning and Democratic-leaning states.

(b) Combine large states with large states, and small states with small states, mixing party

lean.

(c) Combine Republican-leaning with Republican-leaning and Democratic-leaning with

Democratic-leaning, mixing state sizes.

(d) Combine Republican-leaning with Republican-leaning and Democratic-leaning with

Democratic-leaning, matching large with large.

In each case, data are simulated from the full four-state DGP, but the model is estimated

using grouped data (two aggregated states). I consider 50 Monte-carlo simulation for each

of eight cases. I compare the estimated parameters to the known DGP values.

Across all grouping strategies and both drift environments, the estimated effectiveness

parameters αi reflect a more conservative pattern relative to the data-generating process

(DGP) values. This is expected: the estimated effects correspond to the impact of rallies on a

larger population unit—i.e., a group of states—rather than on individual states. Aggregating

popularity across heterogeneous states naturally dampens within-group variation, and the

model recovers the influence of rallies on the pooled group-level population rather than

state level population. As such, the estimates reflect how rallies shift average popularity

across regional blocs, smoothing over localized state-level dynamics while preserving the

broader implications of campaign behavior.

Other parameters adjust accordingly: drift estimates δk adapt nonlinearly and do not sim-

ply converge to group averages, while cost estimates ci tend to be lower in the grouped ver-

sions, consistent with the higher frequency of rallies per group.

The results also validate the model’s policy implications. In the high-drift environment,

where one party dominates in each state, the marginal effect of rallies on the total prob-

ability of winning is close to zero both in the DGP and the estimated model. In the low-

drift environment, where states are more competitive, the estimated effect of rallies on the

total probability of victory is smaller than—but directionally consistent with—the true ef-

fect, confirming that the grouped model remains conservative. These findings, presented

in Tables A6 and A7, show that the counterfactual experiment results would hold even more

strongly in a full 12-state specification, reinforcing the robustness of the grouped model’s
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insights.

Table A6: Assessing impact of grouping states: larger drift

Panel A: Estimates

Case 1 Case 2 Case 3 Case 4

Parameter DGP Est DGP Est DGP Est DGP Est

αR 0.084 0.046 0.084 0.03 0.084 0.042 0.084 0.043

αD -0.074 -0.038 -0.074 -0.024 -0.074 -0.036 -0.074 -0.037

ρ 0.98 0.984 0.98 0.993 0.98 0.974 0.98 0.974

cR 1.36 0.692 1.36 0.736 1.36 0.677 1.36 0.652

cD 1.26 0.567 1.26 0.565 1.26 0.558 1.26 0.578

δ1 0.11 0.088 0.065 0.023 0.157 0.202 0.135 0.176

δ2 -0.11 -0.087 -0.065 -0.025 -0.157 -0.201 -0.135 -0.176

σ 0.119 0.119 0.119 0.113 0.119 0.12 0.119 0.113

c1 0 -0.011 0 -0.025 0 -0.021 0 -0.044

Panel B: EC Votes DGP v. Group Total

Case 1 Case 2 Case 3 Case 4

Parameter DGP Total DGP Total DGP Total DGP Total

e1 0.33 0.5 0.33 0.67 0.33 0.5 0.33 0.67

e2 0.17 - 0.33 - 0.17 - 0.33 -

e3 0.33 0.5 0.17 0.33 0.33 0.5 0.17 0.33

e4 0.17 - 0.17 - 0.17 - 0.17 -

Panel C: Drift DGP v. Group Average

Case 1 Case 2 Case 3 Case 4

Parameter DGP Avg DGP Avg DGP Avg DGP Avg

δ1 0.2 0.11 0.2 0.065 0.2 0.16 0.2 0.135

δ2 -0.07 - -0.07 - 0.07 - 0.07 -

δ3 -0.2 -0.11 -0.2 -0.065 -0.2 -0.16 -0.2 -0.135

δ4 0.07 - 0.07 - -0.07 - -0.07 -

Panel D: CF Total Rally Effect DGP v. Grouped

Case 1 Case 2 Case 3 Case 4

Parameter DGP Est DGP Est DGP Est DGP Est

R’s effect on R’s win probability 0 0 0.01 0.06 0 0 0 0.01

D’s effect on R’s win probability 0 0 0 -0.07 0 0 -0.01 0

Notes: This table reports results from Monte Carlo simulations designed to evaluate the robustness of parameter recovery when

states are aggregated into regional groups. Data are generated from a four-state model with high drift magnitudes, corresponding

to electorally lopsided states and therefore less competitive elections. The model is estimated on a two-group version where

states are grouped using one of four strategies: (a) Case 1– combining large and small states with mixed partisan lean; (b) Case 2–

grouping by size while mixing partisan lean; (c) Case 3– grouping by partisan lean while mixing size; and (d) Case 4– grouping by

both size and partisan lean. For each configuration, 50 replications are conducted. Grouped estimates of rally effectiveness αi are

consistently smaller in magnitude than the underlying DGP values, reflecting attenuation due to aggregation. Other parameters

(costs and drifts) adjust accordingly. These results show that grouping introduces conservativeness without invalidating policy-

relevant conclusions.
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Table A7: Assessing impact of grouping states: smaller drift

Panel A: Estimates

Case 1 Case 2 Case 3 Case 4

Parameter DGP Est DGP Est DGP Est DGP Est

αR 0.084 0.035 0.084 0.028 0.084 0.041 0.084 0.036

αD -0.074 -0.032 -0.074 -0.027 -0.074 -0.031 -0.074 -0.029

ρ 0.98 0.987 0.98 0.985 0.98 0.986 0.98 0.985

cR 1.36 0.759 1.36 0.707 1.36 0.757 1.36 0.737

cD 1.26 0.627 1.26 0.599 1.26 0.595 1.26 0.584

δ1 0.011 0.007 0.007 0.002 0.016 0.009 0.013 0.007

δ2 -0.011 -0.009 -0.007 -0.01 -0.016 -0.01 -0.013 -0.01

σ 0.119 0.12 0.119 0.114 0.119 0.12 0.119 0.114

c1 0 -0.02 0 0.009 0 0.007 0 0.016

Panel B: EC Votes DGP v. Group Total

Case 1 Case 2 Case 3 Case 4

Parameter DGP Total DGP Total DGP Total DGP Total

e1 0.33 0.5 0.33 0.67 0.33 0.5 0.33 0.67

e2 0.17 - 0.33 - 0.17 - 0.33 -

e3 0.33 0.5 0.17 0.33 0.33 0.5 0.17 0.33

e4 0.17 - 0.17 - 0.17 - 0.17 -

Panel C: Drift DGP v. Group Average

Case 1 Case 2 Case 3 Case 4

Parameter DGP Avg DGP Avg DGP Avg DGP Avg

δ1 0.02 0.011 0.02 0.007 0.02 0.016 0.02 0.0135

δ2 -0.007 - -0.007 - 0.007 - 0.007 -

δ3 -0.02 -0.011 -0.02 -0.007 -0.02 -0.016 -0.02 -0.0135

δ4 0.007 - 0.007 - -0.007 - -0.007 -

Panel D: CF Total Rally Effect DGP v. Grouped

Case 1 Case 2 Case 3 Case 4

Parameter DGP Est DGP Est DGP Est DGP Est

R’s effect on R’s win probability 0.44 0.32 0.41 0.32 0.44 0.36 0.32 0.27

D’s effect on R’s win probability -0.42 -0.29 -0.45 -0.34 -0.43 -0.27 -0.57 -0.37

Notes: This table reports results from Monte Carlo simulations designed to evaluate the robustness of parameter recovery when

states are aggregated into regional groups. Data are generated from a four-state model with low drift magnitudes, corresponding to

competitive electotions. The model is estimated on a two-group version where states are grouped using one of four strategies: (a)

Case 1– combining large and small states with mixed partisan lean; (b) Case 2– grouping by size while mixing partisan lean; (c) Case

3– grouping by partisan lean while mixing size; and (d) Case 4– grouping by both size and partisan lean. For each configuration, 50

replications are conducted. Grouped estimates of rally effectiveness αi are consistently smaller in magnitude than the underlying

DGP values, reflecting attenuation due to aggregation. Other parameters (costs and drifts) adjust accordingly. These results show

that grouping introduces conservativeness without invalidating policy-relevant conclusions.
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F Numerical Approximation

F.1 Primitives

Let P = {(pr
1, . . . ,p

r
K)}Rr=1 be the state variable grid. Let T(p) =

(
T1(p),T2(p), . . . ,TR(p)

)
be

a vector collecting Chebyshev polynomial terms corresponding to an arbitrary grid point p.

The approximated values all value functions in the model take for a p ∈ P be given by:{
ṼR,t(p), ṼD,t(p),

{
ũR, f ,t(k; p), ũD, f ,t(k; p), {ũR,s,t(k; l,p), ũD,s,t(k; l,p)}Kl=0

}K

k=0

}T

t=1

The approximated values all conditional choice probabilities in the model take for a p ∈ P

be given by: {{
σ̃R, f ,t(k; p), σ̃D, f ,t(k; p), {σ̃R,s,t(k; l,p), σ̃D,s,t(k; l,p)}Kl=0

}K

k=0

}T

t=1

I approximate the value functions by Chebyshev polynomials. Let the coefficients of the

polynomial terms approximating Vi,t(.) be denoted by γV
i,t, ui, f ,t(k; .) by γ f

i,t,k and ui,s,t(k; l, .)

by γs
i,t,k,l. Apart from these, I also need a Gaussian quadrature for calculating conditional

expectation. Let ν = {(νs
1, . . . , ν

s
K, ω

s)}Ss=1 be a Gaussian quadrature.

F.2 Last Period

For period T, we do not require coefficients in period T + 1, nor the Gaussian quadrature

because the conditional expectation of the value function can be computed. The following

equations describe how to evaluate all value function values over the grid P. Note here the

approximated values are equal to true values.

ũi,s,T(ai; a j,pr) = −ci(1 − ai,0) + β
K∑

k=1

EkΦ
(αiai,k + α ja j,k + ρpr

k + δk

σν

)
(F1)

σ̃i,s,T(a j; ai,pr) =
exp

(
ũi,s,T(ai; a j,pr) − ũi,s,T(0; a j,pr)

)
1 +

∑K
l=1 exp

(
ũi,s,T(l; a j,pr) − ũi,s,T(0; a j,pr)

) (F2)

ũi, f ,T(ai; a j,pr) = −ci(1 − ai,0) + β
K∑

a j=0

K∑
k=1

EkΦ
(αiai,k + α ja j,k + ρpr

k + δk

σν

)
× σ̃ j,s,T(a j; ai,pr) (F3)

σ̃i, f ,T(a j; pr) =
exp

(
ũi, f ,T(ai; pr) − ũi,s,T(0; pr)

)
1 +

∑K
l=1 exp

(
ũi, f ,T(l; pr) − ũi,s,T(0; f pr)

) (F4)
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Ṽi,T(pr) = fi log
( K∑

ai=0

exp
(
ũi, f ,T(ai; pr)

))
+ (1 − fi)

K∑
a j=0

log
( K∑

ai=0

ũi,s,T(ai; a j,pr)
)
× σ̃ j,s,T(a j; ai,pr) (F5)

Where ai,k = 1{ai = k} for all i ∈ {R,D} and k ∈ {0, 1, . . . ,K}.

F.3 Period t : Interpolating Polynomials

In an arbitrary period t, suppose we have computed the values of the approximated value

functions. Define T as the matrix obtained by collecting transpose of all Chebyshev polyno-

mial terms at each p ∈ P such that Ti j = T j(pi) where pi is the ith point in P and T j is the j− th

order Chebyshev polynomial. We can collect the approximated values of the value function

Ṽi,t for each i as a vector and pre-multiply by T−1 to obtain the interpolating polynomial

coefficients (specific to Ṽi,t, ũi, f ,k,t, and ũi,s,k,l,t and call them γV
i,t, γ

f
i,k,t, and γs

i,k,l,t. Once, we

have obtained these coefficients, it allows us to interpolate the value functions and condi-

tional choice probabilities at any given popularity standing p. Then it is straightforward to

compute the approximated values of the value functions. Moreover, the conditional choice

probabilities are also straightforward to calculate. This property will be used extensively in

the next subsection.

F.4 Period t : Approximate Value Functions and CCPs on the grid

We can obtain period t + 1 interpolating polynomial coefficients by following steps in the

previous subsection. Now we will build over that in this subsection with the objective of

obtaining period t values of the value functions over the grid P. First, by following Judd et al.

(2017), define vectors Ir,k,l for each r, k, l that collects the integrated Chebyshev polynomial

terms as followed:

Ir′
r,k,l =

S∑
s=1

Tr′



αR1{k == 1} + αD1{l == 1} + ρpr

1 + δ1 + σννs
1

...

αR1{k == K} + αD1{l == K} + ρpr
K + δK + σννs

K


ωs (F6)

Here, νs
1, . . . , ν

s
K are Gaussian shocks and ws is the weight of these shocks. The choice of

the Gaussian quadrature is discussed later. Consequently define Ir,k,l = (I1
r,k,l, I

2
r,k,l, . . . , I

R
r,k,l).

Note none of the terms used in this calculation depends upon the period t and therefore this
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calculation needs to be done once outside the value iteration loop. The integrated Cheby-

shev polynomial, Ir,k,l, can be used to calculate ũi,s,t as followed:

ũi,s,t(ai; a j,pr) = −ci(1 − ai,0) + β
R∑

r2=1

γV
i,t+1;r2

Ir2
r,ai,a j

(F7)

Here γV
i,t+1;r2

is the coefficient of the rth
2 term of the polynomial interpolating Vi,t+1(). The

sum “
∑R

r=1 γ
V
i,t+1,r2

Ir2
r,ai,a j

” approximatesE[Vi,t+1(p)|ai, a j,pr]. Moreover the choice of the Gaus-

sian quadrature ensures that the error in this approximation depends on the degree of the

Chebyshev polynomial. The conditional choice probability for the second mover is given

by:

σ̃i,s,t(ai; a j,pr) =
exp

(
− ci(1 − ai,0) + β

∑R
r2=1 γ

V
i,t+1,r2

(
Ir2
r,ai,a j
− Ir2

r,0,a j

))
1 +

∑K
k=1 exp

(
− ci + β

∑R
r2=1 γ

V
i,t+1,r2

(
Ir2
r,k,a j
− Ir2

r,0,a j

)) (F8)

Provided the above we can calculate the first mover’s pay-offs as followed:

ũi, f ,t(ai; a j,pr) = −ci(1 − ai,0) + β
K∑

a j=0

( R∑
r2=1

γV
i,t+1;r2

Ir2
r,ai,a j

)
× σ̃ j,s,t(a j; ai,pr) (F9)

Here there are two expectations, the outer expectation is with respect to the opponent’s

second mover conditional choice probabilities. The inner expectation is over next period

popularity. Provided this, it is possible to compute σ̃i, f ,t(ai; pr).

σ̃i, f ,t(ai; pr) =
exp

(
− ci(1 − ai,0) + β

∑R
r2=1 γ

V
i,t+1,r2

(∑K
a j=0(Ir2

r,ai,a j
σ̃ j,s,t(a j; ai,pr) − Ir2

r,0,a j
σ̃ j,s,t(a j; 0,pr)

))
1 +

∑K
k=1 exp

(
− ci + β

∑R
r2=1 γ

V
i,t+1,r2

(∑K
a j=0(Ir2

r,k,a j
σ̃ j,s,t(a j; k,pr) − Ir2

r,0,a j
σ̃ j,s,t(a j; 0,pr)

)) (F10)

We can compute the approximated value function at period t for an arbitrary pr
∈ P as

followed:

Ṽi,t(pr) = fi log
( K∑

ai=0

exp
(
ũi, f ,t(ai; pr)

))
+ (1 − fi)

K∑
a j=0

log
( K∑

ai=0

ũi,s,t(ai; a j,pr)
)
× σ̃ j,s,t(a j; ai,pr)

(F11)

F.5 Sparse Grid, Polynomial and Gaussian Quadrature

I follow Judd et al. (2014) for constructing a Smolyak Grid for approximation level µ and the

corresponding Chebyshev polynomial. I construct Smolyak Grid, U = {(ur
1, . . . ,u

r
K)}Rr=1 over

[−1, 1]K and its corresponding Chebyshev polynomialΨ(u). Then the grid P = {(pr
1, . . . ,p

r
K)}Rr=1
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for a given set of parameters ρ, σν, δ1, . . . , δK is constructed as followed:

pr = pk + (p̄k − pk)
ur

k + 1

2

where p̄k =
δk

1 − ρ
+

 αR

1 − ρ
+

3σν√
1 − ρ2


pk =

δk + αD

1 − ρ
+

 αD

1 − ρ
−

3σν√
1 − ρ2


(F12)

The Chebyshev polynomial T(p) = (T1(p),T2(p), . . . ,TR(p)) is defined as followed:

Tr(p) =Ψr

(
2
(p1 − p1

p̄1 − p1

)
− 1, 2

(p2 − p2

p̄2 + p2

)
− 1, . . . , 2

(pK − pK

p̄K + pK

)
− 1

)
(F13)

Where Ψr(.) is the rth Chebyshev polynomial term. The Gaussian quadrature, denoted

by ν = {(νs
1, . . . , ν

s
K, ω

s)}Ss=1, is obtained from http://www.sparse-grids.de/. I choose

KPN for K dimensions and degree 2µ + 1. This quadrature can compute exact integral of a

K−dimensional complete polynomial of maximal degree 2µ + 1.

F.6 Algorithm

Here I will describe the algorithm that is used to solve the game using the equations dis-

cussed above. The algorithm will be defined for a given parameter values, θPopularity =
{
αR,

αD, ρ, σν, δ1, δ2, . . . , δK

}
and θCost =

{
cR, cD, c1, c2, . . . , cK

}
and the approximation level µ.

Step 0 Generate the Smolyak pair, U,Ψ for K dimensions and approximation level µ by fol-

lowing Judd et al. (2014). Obtain KPN Gaussian quadrature ν = {(νs
1, . . . , ν

s
K,w

s)}Ss=1

fromhttp://www.sparse-grids.de/ for K dimensions and approximation level 2µ+

1.

Step 1 Compute the parameter-specific P,T using equations F12 and F13.

Step 2 Pre-Compute integrals of Chebyshev terms contingent on current popularity and can-

didate decisions by equation F6.

Step 3 Approximate Backward Induction.

1 Carry-out the following two steps:

- Compute {Ṽi,T, ũi, f ,T, ũi,s,T, σ̃i, f ,T, σ̃i,s,T} for candidate i = R,D by following

equations F5, F3, F1,F4, F2 respectively.

- Obtain coefficients of the interpolating polynomials, {γV
i,T, γ

f
i,k,T, γ

s
i,k,l,T} for

candidate i = R,D and k, l = 0, . . . ,K for period t = T respectively.
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Figure A1: Residual Equation Errors
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Notes: The histograms report the residual equation errors in decimal log basis. The dashed line marks

the mean of residual equation error.

2 For t = 1, 2, . . . ,T − 1 do the following:

- Compute {Ṽi,T−t, ũi, f ,T−t, ũi,s,T−t, σ̃i, f ,T−t, σ̃i,s,T−t} for candidate i = R,D by fol-

lowing equations F11, F9, F7,F10, F8 respectively.

- Obtain coefficients of the interpolating polynomials, {γV
i,T−t, γ

f
i,k,T−t, γ

s
i,k,l,T−t}

for candidate i = R,D and k, l = 0, . . . ,K for period t = T respectively.

F.7 Accuracy of Numerical Approximation

I evaluate the accuracy of the numerical approximation by computing the errors of the resid-

ual equations (Judd, 1992). I simulate the model 400 times. This produce a set of popularity

values,
{{(

p1,t,i, . . . , pK,t,m
)}T

t=1

}400

m=1
. For each pt,m = (p1,t,m, . . . , pK,t,m), let Gpk,l(p) = E[pt+1|aR,t =
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k, aD,t = l, p] and define

ut+1
i,s,t(k; l, pt,m) = −ci

(
1 − ai,0

)
+ β

R∑
r=1

γV
i,t+1;r

 S∑
s=1

Tr
(
Gpk,l(pt,m + σνν

s)
)
ωs

 (F14)

I calculate the residuals of equilibrium equation defining second mover value function,

Ri,s,k,l,t(γ; pt,m) as followed:

Ri,s,k,l,t(γ; pt,m) = 1 −
ut+1

i,s,t(k; l, pt,m)

ûi,s,t(k; l, pt,m)
for all i, k, l, t (F15)

Similarly define ut+1
f ,s,t as followed:

ut+1
i, f ,t(k; pt,m) =

k∑
l=1

ut+1
i,s,t(k; l, pm,t)

 exp
(
ut+1

j,s,t(l; k, pm,t) − ut+1
j,s,t(0; k, pm,t)

)
1 +

∑K
l′=1 exp

(
ut+1

j,s,t(l
′; k, pm,t) − ut+1

j,s,t(0; k, pm,t)
) (F16)

Then defineRi, f ,k,t(γ; pt,m)

Ri, f ,k,t(γ; pt,m) = 1 −
ut+1

i, f ,t(k; pt,m)

ûi, f ,t(k; pt,m)
for all i, k, l, t (F17)

In similar fashion one can define Vt+1
i,t (pt,m) and then calculate the corresponding resid-

uals, denoted by Ri,t(γ; pt,m) for all i, t. Note by construction these residual values are all

zero at the collocation points P. These residual equations calculate the discrepancy be-

tween value functions derived by the numerical algorithm (ûi, f ,t, ûi,s,t and V̂i,t) and the ones

obtained from the equilibrium conditions (ut+1
i, f ,t, ut+1

i,s,t and Vt+1
i,t ) in points of the state space

which are different from the collocation points. I report the decimal log of absolute values

of these residuals errors. In Figure A1 I show the histogram of those errors.

The average residual equation errors are in the order of −4.9, −4.73 for R and D’s value

functions (resp.); −4.93 and −4.69 for R’s and D’s first mover value function; and −5.15 and

−5.07 for R and D’s second mover value functions. Given the complexity of the model these

discrepancies are in a reasonable range.
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G Algorithm for Evaluating the Approximate Likelihood

G.1 Algorithm

Here I will describe the algorithm used for computing ℓ̂ℓ (θ; X0,X1, . . . ,XD̄) step-by-step.

We will use the equations discussed in sections F and C. The algorithm will be defined for

a given parameter values, θ =
{
αR, αD, ρ, σν, δ1 . . . , δK, cR, cD, c1, . . . , cK

}
and the approxima-

tion level µ. The steps of the algorithm are below:

Step 0-3 Execute steps 0-3 from the Algorithm described in Online Appendix Subsection F.6.

Step 4 For d = 1, 2, . . . , D̄ do the following:

- Calculate p̂m,d
l,k for k = 1, . . . ,K, l = 1, . . . , 5 and m = 1, . . . ,M using equations C1,

C2 and C2.

- For each m ∈ {1, 2, . . . ,M} and l ∈ {1, 2, . . . , 5} calculate σ̂4(d−1)+1(Ad,l; p̂m,d
l ), where

p̂m,d
l = (p̂m,d

l,1 , . . . , p̂
m,d
l,K ), using equation F10 and F8.

- Calculate λ̂θd
(
Xd

∣∣∣Xd−1

)
using equation C4.

Step 5 Calculate ℓ̂ℓ (θ; X0,X1,X2, . . . ,XD̄) using equation C5.

75



H Addition Figures

(a) 2016 Presidential Election
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Figure A2: Panels (a) and (b) plots the model performance within the sample. The columns represent the

model prediction, the solid points show observed probability of rallies for these groups and error-bars represent

the 95% confidence intervals. Panels (c)-(f) show that the model supports the increasing correlation between

rallies and electoral college vote pattern. The bin −4 corresponds to 100 − 76, −3 corresponds to 75 − 51, −2

corresponds to 50 − 26, and finally −1 corresponds to 25 − 1 days before election. The blue line, circular points

and the confidence regions correspond to the data and the black lines and the triangle points correspond to the

model.
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I Additional Tables

Table A8: Correlation between Rallies and Electoral College Votes

Dependent Variable: Rally Count (Ai,d,k,y)
Full Sample Obama’12 Romney’12 Clinton’16 Trump’16

Model: (1) (2) (3) (4) (5)

Variables
1 {−100 ≤ d ≤ −76} × Ek 0.001 -0.005∗∗ 0.001 0.003 0.006∗∗

(0.002) (0.002) (0.003) (0.002) (0.003)
1 {−75 ≤ d ≤ −51} × Ek 0.001 -0.004∗ 0.006∗∗ 0.0006 0.002

(0.002) (0.002) (0.003) (0.002) (0.003)
1 {−50 ≤ d ≤ −26} × Ek 0.005∗∗ 0.002 0.007∗∗ 0.006∗∗∗ 0.007∗∗

(0.001) (0.002) (0.003) (0.002) (0.003)
1 {−25 ≤ d ≤ −1} × Ek 0.009∗∗ 0.002 0.008∗∗∗ 0.012∗∗∗ 0.013∗∗∗

(0.003) (0.002) (0.003) (0.002) (0.003)

Fixed-effects
i × y Yes - - - -
Day-Bin Yes Yes Yes Yes Yes

Fit statistics
Observations 4,800 1,200 1,200 1,200 1,200
R2 0.03063 0.01653 0.03032 0.04647 0.04728
Within R2 0.02790

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A9: In Sample Model Fit

Panel (A): Comparison of Means

Romney Obama Trump Clinton

Model Data Model Data Model Data Model Data

Southwest 0.145 0.12 0.146 0.17 0.128 0.15 0.0628 0.04

0.069 0.081 0.076 0.04

Midwest 0.154 0.1 0.146 0.2 0.153 0.15 0.0745 0.08

0.063 0.088 0.076 0.056

Northeast 0.315 0.31 0.255 0.26 0.387 0.37 0.192 0.21

0.11 0.099 0.12 0.09

Southeast 0.348 0.43 0.244 0.16 0.446 0.44 0.236 0.24

0.12 0.079 0.13 0.096

Panel (B): Measures of Fit

Romney Obama Trump Clinton

Correlation 0.7415 0.7668 0.6947 0.8378

Mean Squared Error 0.3602 0.3296 0.4140 0.2384

Correct Predictions 0.7650 0.8025 0.7375 0.8600

a This table shows the in-sample model fit. The average number of rallies per day lie in 95% confidence

intervals of the observed in the data. The worst correlation is 0.69. For each period, I define prediction as

the option with the highest probability of choosing. I compare these predictions with the data and calculate

the proportion of correct predictions. Using this metric for prediction I find that worst correct predictions

is 73%.
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