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1This course is based on Victor Aguirregabiria’s Empirical IO book. The
slides (in my first year of teaching) are extremely close to his slides. These will
change in the future iterations of this course.
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Simultaneity Problem
▶ Consider the Cobb-Douglas PF in logarithms:

yit = αLℓit + αKkit + ωit + eit

▶ Note here ωit = log(Ait). Note that E [ωi ] ̸= 0 in this
regression.2

▶ We want to estimate parameters αL and αK .

▶ These parameters represent the causal effects of labor and
capital on output.

▶ When the manager decides the optimal (kit , ℓit), she has some
information about log-TFP ωit .

▶ This means that there is a correlation between the observable
inputs (kit , ℓit) and the unobservable ωit .

▶ This correlation implies that the OLS estimates of αL and αK

are biased and inconsistent.
2The reason I am not using an intercept here is because in Lecture-4 we

allow for Fixed-Effects which is more general than a constant term. In examples
given in these notes, we allow for intercepts but that will change in Lecture-4.



Simultaneity Problem: General Description

▶ Consider a Linear Regression Model (LRM) with one regressor:

yi = α+ βxi + εi

▶ We have a simultaneity problem (or endogeneity problem)
if the regressor xi is correlated with the error term εi .

Endogeneity problem ⇔ E(xiεi ) ̸= 0

▶ It is a problem because it implies that the OLS estimator of
β is not consistent: it does not give us the causal effect of x
on y .



Simultaneity Problem: General Description

ε

X Y



Simultaneity Problem: Bias of OLS

▶ The OLS estimator of the slope parameter β is defined as:

β̂OLS =

∑N
i=1(yi − ȳ)(xi − x̄)∑N

i=1(xi − x̄)2
=

Sxy
Sxx

▶ According to the model:

yi = α+ βxi + εi

ȳ = α+ βx̄ + ε

▶ Such that:
(yi − ȳ) = β(xi − x̄) + (εi − ε̄)

▶ and

(yi − ȳ)(xi − x̄) = β(xi − x̄)2 + (εi − ε̄)(xi − x̄)



Simultaneity Problem: Bias of OLS (2/2)

▶ This implies that:

N∑
i=1

(yi − ȳ)(xi − x̄) = β

N∑
i=1

(xi − x̄)2 +
N∑
i=1

(εi − ε̄)(xi − x̄)

▶ Or:
Sxy = βSxx + Sεx

▶ Therefore, dividing this expression by Sxx , we have that:

β̂OLS ≡ Sxy
Sxx

= β +
Sεx
Sxx

▶ β̂OLS is a measure of the correlation between x and y . In
general, this measure of correlation does not give us the
causal effect of x on y , as measured by the parameter β.

▶ Only if Sεx = 0 we have that β̂OLS = β and the OLS is a
consistent estimator of the causal effect β.



Simultaneity Problem: How Do We Know?

▶ How do we know whether E(xiεi ) = 0 or E(xiεi ) ̸= 0?

▶ In general we don’t know, but in many cases we can have
serious suspicion of omitted variables that are correlated with
the regressor(s).

▶ Only when the observable regressor comes from a randomized
experiment we can be certain that E(xiεi ) = 0.

▶ But data from randomized experiments are still rare in many
applications in economics.



Simultaneity Problem: How Do We Know? (2/2)

▶ In models with simultaneous equations, the model itself can
tell us that some regressors are correlated with the error term:

E(xiεi ) ̸= 0.

▶ For instance, this is the case in the production function model
once we take into account the firm’s optimal demand for
inputs.



Simultaneity Problem: Example (1/3)

▶ A Cobb-Douglas PF only with labor input:

Yi = AiL
αL
i

▶ The amounts of output (Yi ) and labor (Li ) are endogenous
variables which are determined by the conditions of profit
maximization.

▶ Firms operate in the same markets for output and inputs.
Same output and input prices: P and W .

▶ A firm’s profit is:
πi = PYi −WLi

▶ A firm’s Labor Demand is the amount Li that maximizes
profit:

dπi
dLi

= 0 → MPLi =
W

P
→ αL

Yi

Li
=

W

P



Simultaneity Problem: Example (2/3)

▶ The complete model consists of the Production Function (PF)
and the Labor Demand equation (LD):

(PF) Yi = AiL
αL
i

(LD) Li = αL
Yi

W /P

▶ This is a system of two equations with two endogenous
variables.

▶ We can take logarithms in these equations to have a model
that is linear in parameters (a linear regression model):

(log-PF) yi = α0 + αLℓi + ωi

(log-LD) ℓi = γ0 + yi

▶ where α0 = E [ln(Ai )]; ωi = ln(Ai )− α0 ⇒ E [ωi ] = 0; and
γ0 = ln(αLP/W ).



Simultaneity Problem: Example (3/3)

▶ Solving for the endogenous variables in the system of
equations,

(log-PF) yi = α0 + αLℓi + ωi

(log-LD) ℓi = γ0 + yi

▶ we obtain the solution:

yi =
ωi + α0 + αLγ0

1− αL

ℓi =
ωi + α0 + γ0

1− αL

▶ This solution shows that ℓi is correlated with ωi :

Cov(ℓi , ωi ) =
Var(ωi )

(1− αL)
> 0



Simultaneity Problem: Example – Biased OLS

▶ Following up with this example, we can show that the OLS
estimator of αL is biased:

α̂OLS
L =

Syℓ
Sℓℓ

=

∑N
i=1(yi − ȳ)(ℓi − ℓ̄)∑N

i=1(ℓi − ℓ̄)2

▶ The model implies that:

yi − ȳ =
ωi

1− αL
and ℓi − ℓ̄ =

ωi

1− αL

▶ Such that

α̂OLS
L =

Syℓ
Sℓℓ

= 1, and Bias(OLS) = 1− αL.



Simultaneity Problem: Graphical Representation

Figure: Graphical Representation of Simultaneity Problem



Solutions to the Simultaneity Problem

▶ We are going to consider two possible solutions to the
endogeneity problem.

1. Control function / Fixed effects estimation
2. Instrumental variables estimation

▶ First, we will see these potential solutions in a general
regression model, and then we will particularize them to the
estimation of PFs.



Control Function Method

▶ Consider the LRM

yi = β0 + β1x1i + · · ·+ βKxKi + εi

where we are concerned about the endogeneity of regressor
x1i , i.e., E(x1iεi ) ̸= 0.

▶ Suppose that the researcher has sample data for a variable ci
(”the control”) that satisfies two conditions.

▶ [Control] εi = γci + ui such that ui is independent of x1i and
ci .

▶ [No multicollinearity] We cannot write ci as a linear
combination of the exogenous regressors x2i , . . . , xKi .

▶ Under these conditions we can construct a consistent
estimator of β1, β2, . . . , βK : the Control Function (CF)
estimator.



Control Function Estimator

▶ To obtain the CF estimator we simply include the CF variable
ci in the regression and apply OLS:

yi = β0 + β1x1i + · · ·+ βKxKi + γci + ui

▶ Under the ”Control” condition, the new error term ui is not
correlated with the regressors.

▶ And under the ”No multicollinearity” condition all the
regressors (including ci ) are not linearly dependent.

▶ Therefore, this OLS estimator is consistent.

▶ The CF approach uses observables to control for the part of
the error that is correlated with the regressor.



Solutions to Simultaneity: Instrumental Variables

▶ Consider the LRM

yi = β1x1i + · · ·+ βKxKi + εi

where we are concerned about the endogeneity of regressor
x1i , i.e., E(x1iεi ) ̸= 0.

▶ Suppose that the researcher has sample data for a variable zi
(”the instrument”) that satisfies two conditions.

▶ [Relevance] In a regression of x1i on (zi , x2i , . . . , xKi ),
regressor zi has a significant effect on x1i .

▶ [Independence] zi is NOT correlated with εi : E(ziεi ) = 0.

▶ Under these conditions we can construct a consistent
estimator of β1, β2, . . . , βK : the IV or Two-stage Least Square
(2SLS) estimator.



Two Stage Least Squares (2SLS or IV Estimator)

▶ The IV or 2SLS can be implemented as follows.

▶ [Stage 1] Run an OLS regression of x1i on (zi , x2i , . . . , xKi ).
Obtain the fitted values from this regression:

x̂1i = γ0 + γ1zi + γ2x2i + · · ·+ γKxKi

▶ [Stage 2] Run an OLS regression of yi on (x̂1i , x2i , . . . , xKi ).
This OLS estimator is consistent for β1, β2, . . . , βK .

▶ The first stage decomposes x1i in two parts: x1i = x̂1i + e1i ,
where e1i is the residual from this first-stage regression.

▶ Since x̂1i depends only on exogenous regressors, it is not
correlated with εi .



Consistency of IV / 2SLS
▶ To illustrate how this approach gives us a consistent

estimator, consider the model with a single regressor:

yi = α+ βxi + εi

▶ Remember that:

(yi − ȳ) = β(xi − x̄) + (εi − ε̄)

▶ Such that multiplying by (zi − z̄):

(yi − ȳ)(zi − z̄) = β(xi − x̄)(zi − z̄) + (εi − ε̄)(zi − z̄)

▶ And summing over observations i :

Szy = βSzx + Szε

▶ Since Szε = 0, we have that, for large N:

Szy
Szx

= β



Consistency of IV / 2SLS (2/3)

▶ This means that the estimator

β̂IV =
Szy
Szx

=

∑N
i=1(yi − ȳ)(zi − z̄)∑N
i=1(xi − x̄)(zi − z̄)

is a consistent estimator of β.

▶ It remains to show that this β̂IV =
Szy
Szx

is identical to the 2SLS
described above.

▶ By definition:

β̂2SLS =
Sx̂y
Sx̂ x̂

=

∑N
i=1(yi − ȳ)(x̂i − ¯̂x)∑N

i=1(x̂i − ¯̂x)2

▶ where x̂i = γ0 + γ1zi , with γ1 =
Sxz
Szz

.



Consistency of IV / 2SLS (3/3)

▶ Therefore,

x̂i − ¯̂x = γ1(zi − z̄) =
Sxz
Szz

(zi − z̄).

▶ Such that

β̂2SLS =

N∑
i=1

(yi − ȳ)SxzSzz
(zi − z̄)

N∑
i=1

(
Sxz
Szz

(zi − z̄)
)2

=
Syz · Sxz/Szz

S2
xz/Szz

=
Syz
Szx

.

▶ The 2SLS is equivalent to the IV estimator as defined above.



How Do We Find Instruments?

▶ A simultaneous equation model may suggest valid
instruments.

▶ For instance, consider the PF with only labor input, but now
firms operate in different output/labor markets with different
prices.

(PF) yi = α0 + αL ℓi + ωi

(LD) ℓi = ln(αL) + yi − wi

with wi = ln(Wi/Pi ) and E [ωi ] = 0 here because the
intercept term is included.

▶ Suppose that the researcher observes wi .

▶ It is clear that wi satisfies the relevance condition: it does
not enter in the PF as a regressor; it has an effect on labor.

▶ Under the condition E(wiωi ) = 0, it is a valid instrument.



Implementation in R

Yi = β0 + β1 ∗ Xi + β2 ∗ Di + ei

Xi = γ0 + γ1 ∗ Zi + γ2 ∗ Di + ui

Cov(ui , ei ) ̸= 0 ⇒ Cov(Xi , ei ) ̸= 0

# Run OLS (naive regression , biased if x is

endogenous)

ols_model <- feols(y ~ x+D, data = df)

# Run IV regression: instrument x with z

iv_model <- feols(y ~ 1 + D| x ~ z, data = df)



Implementation in R with Fixed Effects

Yit = βi + β1 ∗ Xit + β2 ∗ Dit + eit

Xit = γi + γ1 ∗ Zit + γ2 ∗ Dit + uit

Cov(uit , eit) ̸= 0 ⇒ Cov(Xit , eit) ̸= 0

where βi and gammai are Firm level fixed effects.

# OLS with Firm level FE (biased if x is

endogenous)

ols_model <- feols(y ~ x+D | firm_id , data = df)

# Instrument x with z with Firm level fixed

effects

iv_model <- feols(y ~ 1 + D| firm_id | x ~ z,

data = df)


