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Input prices as IVs

▶ If input prices rit are observable (wages, cost of capital, fuel
and energy prices), then under the assumption that they are
not correlated with TFP, E(ωit rit) = 0, we can use them as
instruments.

▶ This approach has several limitations/problems.

▶ Problem (1). Firms in the same industry typically use very
similar type of inputs (labor, capital equipment, energy,
materials) and they buy these inputs in the same input
markets. If these input markets are competitive, the input
prices are the same for all the firms in the industry:

rit = rt for every firm i

▶ If input prices vary only over time, they are perfectly collinear
with time-dummies in the PF. No valid instruments.



Input prices as IVs (2)

▶ Problem (2). When input prices have cross-sectional
variation, it could be because of endogenous reasons.

(a) Inputs markets are not competitive and firms with higher
productivity pay higher prices. Then,

cov(ωit , rit) ̸= 0,

making input prices not a valid instrument.
(b) Firms may be using different types of labor or capital inputs,

with different qualities. This difference in the quality of inputs
is part of the log-TFP. Then,

cov(ωit , rit) ̸= 0,

making input prices not a valid instrument.



Input prices as IVs (3)

▶ An ideal situation for using input prices as IVs is when firms in
the same industry produce in different geographic markets
where the input markets are competitive.

▶ The variation in input prices over geographic market is due to
different conditions on the supply of inputs (e.g., labor supply,
better access to materials) and not to differences in
productivity.



Fixed-Effects (FE) estimator

▶ Consider the PF:

yit = αL ℓit + αK kit + ωit (1)

▶ Let’s first define the FE (or Within-Groups) estimator and
then we will show under which conditions this estimator
provides unbiased (consistent) estimates of parameters αL and
αK .

▶ If, for each firm i , we average equation (1) considering all the
years of observations, we have the equation:

ȳi = αL ℓ̄i + αK k̄i + ω̄i (2)

▶ where:

ȳi =
1

T

T∑
t=1

yit ; ℓ̄i =
1

T

T∑
t=1

ℓit ; k̄i =
1

T

T∑
t=1

kit ; ω̄i =
1

T

T∑
t=1

ωit



FE estimator (2)

▶ If we subtract equation (2) from equation (1), we have:

(yit − ȳi ) = αL(ℓit − ℓ̄i ) + αK (kit − k̄i ) + (ωit − ω̄i ) (3)

▶ This equation is named the Fixed-Effects (or the
Within-Groups) transformation of the model.

▶ The FE estimator is OLS applied to the FE transformed
model.

▶ For instance, if we had only one input, say labor, the FE
estimator of αL would be:

α̂FE
L =

∑N
i=1

∑T
t=1(yit − ȳi )(ℓit − ℓ̄i )∑N

i=1

∑T
t=1(ℓit − ℓ̄i )2



Consistency of FE estimator

▶ The FE estimator is OLS in the regression equation:

(yit − ȳi ) = αL(ℓit − ℓ̄i ) + αK (kit − k̄i ) + (ωit − ω̄i ) (3)

▶ As any OLS estimator, it is consistent if the error term is not
correlated with the regressors. In this case, this implies:

E
[
(ωit − ω̄i )(ℓit − ℓ̄i )

]
= E

[
(ωit − ω̄i )(kit − k̄i )

]
= 0

▶ We now present two assumptions on the unobserved log-TFP
that imply consistency of the FE estimator (with time
dummies).



Consistency of FE estimator (2)

▶ Assumption FE-1: Log-TFP has the following structure:

ωit = ηi + δt + uit

▶ ηi is interpreted as managerial ability, or a different technology
that is constant over time.

▶ δt represents productivity that affects in the same way all the
firms in the industry.

▶ uit is a firm-specific transitory shock.



Consistency of FE estimator (3)

▶ Assumption FE-2: The firm-specific transitory shock, uit , is
not correlated over time and it is realized after the firm
chooses the amount of inputs at period t.

▶ uit is a surprise that is realized after the firm has chosen
inputs. For any two periods t and s, uit is not correlated with
inputs ℓis and kis .



Consistency of FE estimator (4)

▶ Under assumptions FE-1 we have that:

ω̄i = ηi + δ̄ + ūi

such that:
ωit − ω̄i = δt − δ̄ + uit − ūi

▶ If we control for δt − δ̄ using time dummies, the remaining
error term is uit − ūi .

▶ Under Assumption FE-2, the error term uit − ūi is not
correlated with the regressors ℓit − ℓ̄i and kit − k̄i because, for
any two periods t and s, uit is not correlated with inputs ℓis
and kis .

▶ Under FE-1 and FE-2, the FE estimator is unbiased /
consistent.



Cochrane-Orcutt estimator

▶ The assumption that the firm-specific transitory shock is not
serially correlated (and fully unknown to the firm at period t)
is quite strong.

▶ This assumption is testable (Arellano-Bond test for serial
correlation). If rejected, this assumption can be relaxed.

▶ Suppose that we maintain assumption FE-1 but we replace
assumption FE-2 with the following.

▶ Assumption FE-CO. The firm-specific transitory shock, uit ,
follows an Autoregressive-1 process, AR(1):

uit = ρ ui ,t−1 + ait

where ρ is a parameter, and ait is not correlated over time and
it is realized after the firm chooses the amount of inputs at
period t.



Cochrane-Orcutt estimator (2)

▶ In this model where uit is serially correlated, the standard FE
estimator is inconsistent (biased) because uit − ūi is correlated
with the regressors.

▶ However, we can define a new version of the FE estimator
(Cochrane-Orcutt FE) that is consistent under these
conditions and the additional condition that the number of
periods T is large.



Cochrane-Orcutt estimator (3)

▶ Consider the PF at periods t and t − 1 under assumption
FE-1:

yit = αL ℓit + αK kit + ηi + δt + uit

yit−1 = αL ℓit−1 + αK kit−1 + ηi + δt−1 + uit−1

▶ Multiplying the equation at t − 1 by ρ and subtracting it from
the equation at period t, we get:

yit − ρ yit−1 =αL[ℓit − ρ ℓit−1] + αK [kit − ρ kit−1]

+ [1− ρ]ηi + [δt − ρ δt−1] + ait

▶ because uit − ρ uit−1 = ait .

▶ This is called a quasi-difference transformation.



Cochrane-Orcutt estimator (4)
▶ The quasi-difference transformation can be written as:

yit = β1yi,t−1 + β2ℓit + β3ℓit−1 + β4kit + β5kit−1

+ η∗i + δ∗t + ait

▶ with

β1 = ρ, β2 = αL, β3 = −ραL, β4 = αK , β5 = −ραK ,

and
η∗i = (1− ρ)ηi , δ∗t = δt − ρδt−1

▶ Note that given the β parameters we can obtain the parameters ρ,
αL, and αK . In fact, there are additional (over-identifying)
restrictions:

ρ = β1 = −β3
β2

= −β5
β4

αL = β2 = −β3
β1
, αK = β4 = −β5

β1

▶ Now, under assumption FE-CO, in equation (2), the transitory
shock ait is not correlated with the inputs.



Cochrane-Orcutt estimator with Fixed Effects (5)

▶ Consider equation (4) in firm-specific means:

ȳi = β1 ȳi(−1)+β2 ℓ̄i +β3 ℓ̄i(−1)+β4 k̄i +β5 k̄i(−1)+η
∗
i + δ̄

∗+ āi

▶ And in deviations with respect to firm-specific means:

yit − ȳi = β1(yit−1 − ȳi(−1)) + β2(ℓit − ℓ̄i ) + β3(ℓit−1 − ℓ̄i(−1))

+ β4(kit − k̄i ) + β5(kit−1 − k̄i(−1))

+ (δ∗t − δ̄∗) + (ait − āi )

▶ The FE–Cochrane-Orcutt estimator is applying OLS to this
equation.



Cochrane-Orcutt estimator: Large T condition

▶ IMPORTANT NOTE: The FE–Cochrane–Orcutt is
consistent (asymptotically unbiased) only when T is large,
e.g., larger than 30 or 40 periods.

▶ Note that under condition FE–CO, we have that (ait − āi ) is
not correlated with regressors

ℓit − ℓ̄i , ℓit−1 − ℓ̄i(−1), kit − k̄i , kit−1 − k̄i(−1).

▶ However, even under this condition, we have that (ait − āi ) is
correlated with regressor yit−1 − ȳi(−1).

▶ Note that yit−1 depends on ai ,t−1 and that ai ,t−1 is part of āi .

▶ This correlation goes to zero as T becomes large.



Implementation of FE and FE-CO (1)
▶ Run the following

yit = αLℓit + αKkit + ηi + δt + uit FE

yit = β1yi ,t−1 + β2ℓit + β3ℓit−1 + β4kit + β5kit−1

+ η∗i + δ∗t + ait FE-CO

library(fixest)

## FIRM ID and Year is generally given

fe_ols <-feols(y~ k + l| firm_id +year ,

data=df)

## Lagged output and lagged inputs need to be

created

df<-df %>%

group_by(firm_id) %>%

arrange(year , .by_group = TRUE) %>%

mutate(lag_y = dplyr::lag(y,1),

lag_k = dplyr::lag(k,1),

lag_l = dplyr::lag(l,1)) %>%

ungroup ()



Implementation of FE and FE-CO (2)

▶ Run the following

yit = αLℓit + αKkit + ηi + δt + uit FE

yit = β1yi ,t−1 + β2ℓit + β3ℓit−1 + β4kit + β5kit−1

+ η∗i + δ∗t + ait FE-CO

library(fixest)

## FIRM ID and Year is generally given

feco_ols <-feols(y~lag_y + l + lag_l +

k + lag_k | firm_id + year ,

data=df)



FE-CO tables

▶ FE-CO1 and FE-CO2 are Cochrane-Orcutt estimator. Assume
that the FE-CO assumptions hold, can you fill in the ”?” in
the table?

Dependent Variable: y
Model: (FE) (FE-CO1) (FE-CO2)

Variables
l 0.6244∗∗∗ ? 0.0208

(0.1331) (0.11) (0.1162)
k 0.1712∗∗∗ ? 0.1038∗

(0.0587) (0.082) (0.0573)
lag y 0.9118∗∗∗ 0.8361∗∗∗

(0.0199) (0.031)
lag l -0.0323 ?

(0.1231) (0.15)
lag k -0.0949∗ ?

(0.0525) (0.08)

Fixed-effects
IndustryCode Yes Yes Yes
Year Yes Yes Yes

Fit statistics
Observations 1,134 1,107 871
R2 0.97323 0.99588 0.7528
Within R2 0.44341 0.91291 0.7013



Arellano-Bond estimator

▶ Assumption FE-2 (or for that matter FE-CO) has two parts:
▶ FE-2(a): uit is not serially correlated.
▶ FE-2(b): uit is not known to the firm when it decides the

amounts of inputs.

▶ In most applications, the stronger of the two assumptions is
FE-2(b).

▶ We now present a panel data estimator that relaxes
assumption FE-2(b).



Arellano-Bond estimator (2)

▶ We maintain assumptions FE-1, ωit = ηi + δt + uit , and
FE-2(a), uit is not serially correlated.

▶ Define the variables in first differences:

∆yit = yit − yit−1; ∆ℓit = ℓit − ℓit−1; etc.

▶ And consider the PF in first differences (equation at period t
minus equation at period t − 1):

∆yit = αL∆ℓit + αK ∆kit +∆δt +∆uit

▶ We have removed the term ηi from the error term, and we
can control for the term ∆δt by including time-dummies.

▶ But we still have the term ∆uit that is correlated with the
regressors ∆ℓit and ∆kit .



Arellano-Bond estimator (3)

∆yit = αL∆ℓit + αK ∆kit +∆δt +∆uit

▶ Consider the following general models for demand of capital
and labor inputs:

(LD) ℓit = βLD1 ℓi ,t−1 + βLD2 ki ,t−1 + βLD3 ωit + βLD4 rit

(KD) kit = βKD1 ℓi ,t−1 + βKD2 ki ,t−1 + βKD3 ωit + βKD4 rit

▶ This means that ℓit and kit depend on the current and the
past histories of the transitory shocks:

uit , ui ,t−1, ui ,t−2, . . .

▶ But not on future shocks: uit+1, ui ,t+1, . . .



Arellano-Bond estimator (4)

∆yit = αL∆ℓit + αK ∆kit +∆δt +∆uit

▶ This implies that ℓi ,t−2 and ki ,t−2 are valid instruments in this
equation.

▶ They are Relevant: ∆ℓit and ∆kit are correlated with ℓi ,t−2

and ki ,t−2.

▶ They are not correlated with the error term:

E[ℓi ,t−2∆uit ] = E[ℓi ,t−2 uit ]− E[ℓi ,t−2 ui ,t−1] = 0



Arellano-Bond estimator (5)

▶ This idea implies many moment restrictions that can be used
to estimate αL, αK , and ∆δt :

E(ℓi ,t−j ∆uit) = 0 for t = 3, . . . ,T ; and j := 2

E(ki ,t−j ∆uit) = 0 for t = 3, . . . ,T ; and j := 2

E(yi ,t−j ∆uit) = 0 for t = 3, . . . ,T ; and j := 2

▶ The Arellano-Bond estimator exploits all these restrictions
optimally: optimal weighting; optimal Generalized Method of
Moments (GMM) estimator.



System GMM

▶ When labor and capital inputs are strongly correlated, the
Arellano–Bond estimator suffers from a weak instruments
problem: low correlation between instruments and endogenous
variables, and imprecise estimates.

▶ Note that if ℓit and kit follow random walks, then ∆ℓit and
∆kit are not serially correlated and therefore they are not
correlated with the instruments ℓi ,t−2 and ki ,t−2.

▶ For these cases, Blundell–Bond derive additional restrictions
that help to identify the PF.



Arellano–Bond Setup

We want to estimate a Cobb–Douglas production function:

log(salesit) = βL log(laborit) + βK log(capitalit) + uit

using Arellano–Bond GMM (difference GMM).

Data: balanced panel blundell bond

▶ id: firm identifier

▶ year: year

▶ sales: firm revenue

▶ labor, capital



Data Preparation in R

df2 <- blundell_bond %>%

group_by(id) %>%

arrange(year , .by_group = TRUE) %>%

mutate(y = log(sales),

l = log(labor),

k = log(capital)) %>%

ungroup ()



Data Preparation in R

# DO INSTALL plm BEFORE LOADING IT BLINDLY.

library(plm)

pdf <- pdata.frame(df2 , index = c("id","year"))

pgmm(

y ~ k + l |

lag(y, 2:2) + lag(k, 2:2) + lag(l, 2:2),

data = pdf ,

effect = "individual",

model = "onestep",

transformation = "d"

)



Interpreting Output

Typical pgmm output:

▶ “Oneway (individual) effect One-step model Difference
GMM” ⇒ First-difference GMM estimator, one-step
weighting, removing firm FE.

▶ Sargan test Tests validity of over-identifying restrictions
(instruments). High p-value ⇒ instruments valid. Low
p-value ⇒ overfit/misspecified.

▶ Autocorrelation test (1) Tests AR(1) in differenced
residuals (should exist).

▶ Autocorrelation test (2) Tests AR(2) in differenced
residuals (should NOT exist). High p-value desired.

▶ Wald test for coefficients Tests joint significance of
regressors.



Output

Table: Arellano–Bond Difference GMM Estimates

Estimate Std. Error z-value

log(capital) (k) 0.426 0.029 14.82***
log(labor) (l) 0.530 0.093 5.72***

Model diagnostics
Sargan test (df = 16) χ2 = 131.32 p < 0.001
AR(1) test z = −5.32 p < 0.001
AR(2) test z = −3.88 p < 0.001
Wald test (df = 2) χ2 = 630.40 p < 0.001

Observations 3054
Firms (n) 509
Time periods (T ) 8

*** p < 0.01, ** p < 0.05, * p < 0.1



Linear Hypothesis : For feols Regressions

▶ Suppose you wish to test if the estimated production function
is CRS.

library(fixest)

library(car) #### INSTALL THIS PACKAGE

library(sandwich) #### INSTALL THIS PACKAGE

fe_olsobj <-feols(y~ k + l|industry+year ,

data=df2)

coef(fe_olsobj)

# Displaying output now.

# DO NOT BLINDLY COPY

[output]

k l

0.003620979 0.033905935

# BACK TO CODE

linearHypothesis(fe_olsobj , "k + l = 1", vcov =

vcovCL(fe_tw))

# linearHypothesis () CANNOT automatically

# extract vcov from feols output. Provide it



Linear Hypothesis : For pgmm Regressions (1)

▶ Suppose you wish to test if the estimated production function
is CRS.

library(plm)

pdf <- pdata.frame(df2 , index = c("id","year"))

pgmm(

y ~ k + l |

lag(k, 2:2) + lag(l, 2:2),

data = pdf ,

effect = "individual",

model = "onestep",

transformation = "d"

)



Linear Hypothesis : For pgmm Regressions (2)

▶ Suppose you wish to test if the estimated production function
is CRS.

# Displaying output now.

# DO NOT BLINDLY COPY

[output]

k l

0.01635895 0.40369588

# BACK TO CODE

linearHypothesis(

ab1 ,

hypothesis.matrix = "k + l = 1",

test = "Chisq" )

# linearHypothesis () CAN automatically

# extract vcov from pgmm output.

# no need to Provide it



Advance Control Function Methods

▶ Olley & Pakes (1996; OP) and Levinsohn & Petrin (2003; LP)
are control function methods.

▶ Instead of looking for instruments for K and L, we look for
observable variables that can control (or proxy) unobserved
TFP.

▶ The control variables should come from a model of firm
behavior.

▶ Note: Both OP and LP assume that labor is perfectly flexible
input. This assumption is completely innocuous for their
results. To emphasize this point, I present here versions of OP
and LP that treat labor as a potentially dynamic input.



Olley and Pakes (OP)

▶ Consider the following model of simultaneous equations:

(PF) yit = αLℓit + αKkit + ωit + εit

(LD) ℓit = fL(ℓi ,t−1, kit , ωit , rit)

(ID) iit = fK (ℓi ,t−1, kit , ωit , rit)

▶ (LD) & (ID): firms’ optimal labor and investment given state
variables (ℓi ,t−1, kit , ωit , rit); rit = input prices.

▶ OP consider the following assumptions:

(OP - 1) fK (ℓi,t−1, kit , ωit , rit) is invertible in ωit

(OP - 2) No cross-sectional variation in rit : rit = rt
(OP - 3) ωit follows a first order Markov process.
(OP - 4) kit is decided at t − 1: kit = (1− δ)ki,t−1 + ii,t−1



Olley and Pakes (2)

▶ OP method deals both with the simultaneity problem and
with the selection problem due to endogenous exit.

▶ It doesn’t deal with potential measurement error in inputs.

▶ OP method proceeds in two stages.

▶ First stage: estimates αL [Assumptions (OP-1) and (OP-2)
are key];
and the second stage estimates αK [Assumptions (OP-3) and
(OP-4) are key].



Olley and Pakes First Stage

▶ Assumptions (OP-1) and (OP-2) imply that the investment
equation is invertible in ωit :

ωit = f −1
K (ℓi ,t−1, kit , iit , rt)

▶ Solving this equation in the PF we have:

yit = αLℓit + αKkit + f −1
K (ℓi ,t−1, kit , iit , rt) + eit

= αLℓit + φt(ℓi ,t−1, kit , iit) + eit

▶ This is a partially linear model. Parameter αL and functions
φ1(.), ..., φT (.) can be estimated using semiparametric
methods.

▶ A possible method is Robinson’s method (199ss). OP use an
n-th order polynomial to approximate the φt functions.



Olley and Pakes First Stage

▶ This first stage is a Control Function method: instead of
instrumenting the endogenous regressors, we include
additional regressors that capture the endogenous part of the
error term.

▶ We are controlling for endogeneity by including (ℓi ,t−1, kit , lit)
as proxies of ωit .

▶ Key assumptions for the identification of αL:

(a) Invertibility of f k(ℓi,t−1, kit , ωit , rt) w.r.t. ωit .
(b) rit = rt , i.e., no cross-sectional variability in unobservables,

other than ωit , affecting investment.
(c) Given (ℓi,t−1, kit , lit , rt), labor lit still has sample variability.



Olley and Pakes First Stage

▶ Example (with parametric linear investment func.):

(PF) yit = αL ℓit + αK kit + ωit + εit

(Inverse ID) ωit = γ1 iit + γ2 ℓi ,t−1 + γ3 kit + γ4 rt

▶ Then,

yit = αL ℓit + (αK + γ3) kit + γ1 iit + γ2 ℓi,t−1 + γ4 rt + εit (1)

⇒ yit = αL ℓit + (αK + γ3) kit + γ1 iit + γ2 ℓi,t−1 + δt︸ ︷︷ ︸
φt(ℓi,t−1,kit ,iit)

+ εit (2)

▶ Note that ℓit is correlated with rt . Therefore, we need rit = rt
and include time dummies to control for rt in order to have
consistency of the OLS estimator in this regression.

▶ Note also that to identify ℓit with enough precision we need to
not have high collinearity between this variable and
(kit , iit , ℓi ,t−1).



Olley and Pakes Second Stage
▶ Estimation of αK : It is based on the other two assumptions:

(OP-3) ωit follows a first order Markov process.
(OP-4) kit is decided at t − 1: kit = (1− δ)ki,t−1 + ii,t−1

▶ Since ωit is first order Markov, we can write:

ωit = E[ωit | ωi,t−1] + ξit = h(ωi,t−1) + ξit

where ξit is an innovation which is mean independent of any information
at t − 1 or before. And h(.) is some unknown function.

▶ φ̂it is identified from 1st step as

general setup φ̂it = φ̂t(ℓi,t−1, kit , iit) (3)

linear example: φ̂it = (αK + γ3) kit + γ1 iit + γ2 ℓi,t−1 + δt (4)

where φ̂t is denoting the estimated version of φt which you may estimate
using a polynomial.

▶ Recall φt(ℓi,t−1, kit , iit) = αK · kit + ωit ⇒ ωit = φ̂it − αK · kit . Then:

ωit = h(ωit−1) + ξit ⇒ φ̂it − αK · kit = h(φ̂it − αK · kit) + ξit (5)

φ̂it = αK kit + h (φ̂i,t−1 − αK · ki,t−1) + ξit (6)



Olley and Pakes Second Stage

▶ We estimate h(.) and αK by applying recursively the same
type of semiparametric method as in the first stage of OP.

φ̂it = αKkit + h (φ̂i ,t−1 − αK · ki ,t−1) + ξit

▶ Suppose that we consider a quadratic function for h(.): i.e.,
h(ω) = π0 + π1ω + π2ω

2. Then:

φ̂it =π0 + αKkit + π1 · (φ̂i ,t−1 − αK · ki ,t−1) (7)

+ π2 · (φ̂i ,t−1 − αK · ki ,t−1)
2 + ξit (8)

▶ It is clear that π0, αK , π1, and π2 are identified in this
equation.



Olley and Pakes Second Stage

▶ Time-to-build is a key assumption for the consistency of this
method. If investment at period t is productive, then the
equation becomes:

φit = αKki ,t+1 + h (αK · kit − φi ,t) + ξit

▶ ki ,t+1 depends on investment at period t and therefore it is
correlated with the innovation ξit .

▶ To relax this assumption, you need an instrument for kit+1.



OP-Implentation (1)

library(tidyverse)

library(fixest)

deg <- 3

dat <- df_op %>%

mutate(across(c(ly1 , ll , lk , li), as.numeric))

%>%

group_by(ccn) %>% arrange(year , .by_group =

TRUE) %>%

mutate(ll_lag = dplyr::lag(ll ,1),

lk_lag = dplyr::lag(lk ,1)) %>%

ungroup () %>%

filter(!is.na(ly1), !is.na(ll), !is.na(lk), !

is.na(li), !is.na(ll_lag))

# Stage 1

m1 <- feols(

ly1 ~ ll + I(year):poly(ll_lag , lk , li , degree

= deg , raw = TRUE),

data = dat

)



OP-Implentation (2)

alpha_L_hat <- unname(coef(m1)["ll"])

# creating phi_hat , lag logk , lag phi_hat

dat$phi_hat <- fitted(m1) - alpha_L_hat * dat$ll

dat2 <- dat %>%

group_by(ccn) %>%

arrange(year , .by_group = TRUE) %>%

mutate(lag_phi_hat=dplyr::lag(phi_hat ,1),

lag_lk=dplyr::lag(lk ,1)) %>%

ungroup () %>%

na.omit()

#Stage - 2

m2<-feols(phi_hat ~ lk + poly(lag_phi_hat ,lag_lk

,degree = 3,raw=TRUE),data=dat2)



OP-Implentation (3)

etable(m1 , m2 ,

keep= c("%ll$", "%lk"), # only

show alpha_L and alpha_K

drop = c("\\( Intercept \\)", "^year::", "poly

\\("),

dict = c("ll"="$\\ alpha_L$",

"lk"="$\\alpha_K$"),

se.below = TRUE ,# estimates with SE in ( )

fitstat = ~ n + r2 + ar2 + f,

digits = 3,

signif.code = c("***"=0.01,"**"=0.05,"*"=0.1),

tex = TRUE

)



OP-Implementation (4)

Dependent Variables: ly1 phi hat
Model: (1) (2)

Variables
αL 0.201∗∗∗

(0.030)
αK 0.013∗∗∗

(0.0008)

Fit statistics
Observations 8,287 4,251
R2 0.43253 0.59275
Adjusted R2 0.43116 0.59179
F-test 315.02 617.13

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Stage-2 SEs are conventional OLS and ignore that ψ̂ and its lag
were estimated in Stage 1.



OP: Empirical Application

▶ US Telecom. equipment industry: 1974–1987.
▶ Technological change and deregulation.

▶ Elimination of barriers to entry;
▶ Antitrust decisions against AT&T: The Consent Decree

(implemented in 1984) → divestiture of AT&T.
▶ Substantial entry/exit of plants.

▶ Data: US Census of manufacturers.



OP: Empirical Application



OP: Empirical Application

▶ Going from OLS balanced panel to OLS full sample almost
doubles αK and reduces αL by 20%. [Importance of
endogenous exit].

▶ Controlling for simultaneity further increases αK and reduces
αL.



Total Factor Productivity (TFP)

▶ Production function:

Yit = AitF (Kit , Lit ,Mit)

▶ Ait is denoted as Total Factor Productivity (TFP).

▶ It is a factor-neutral shifter that captures variations in output
not explained by observable inputs.

▶ TFP is a residual.



Large & Persistent Differences in TFP Across Firms

▶ Ubiquitous: Observed even within narrowly defined industries
and products.

▶ Large differences: 90th to 10th percentile TFP ratios A90th
A10th

▶ U.S. manufacturing, average within 4-digit SIC industries =
1.92

▶ Denmark: average = 3.75
▶ China or India, average > 5

▶ Persistent: AR(1) of log-TFP with annual frequency:
▶ Autoregressive coefficients between 0.6 to 0.8.

▶ It matters: Higher TFP producers are more likely to survive,
innovate, invest.



Why Do Firms Differ in Their Productivity Levels?

▶ What supports such large productivity differences in
equilibrium?

▶ Can producers control the factors that influence productivity,
or are they purely external effects of the environment?

▶ If firms can partly control their TFP, what type of choices
increase it?



Why TFP Dispersion Is Possible in Equilibrium?

▶ Because the profit function is concave in output and the
optimal amount of profit for a monopolist (or duopolist, ...) is
smaller than total demand.

▶ Let the profit of a firm be:

πi = Pi (Yi )Yi − C (Yi ,Ai )

Pi (Yi ) = Inverse demand function; C (Yi ,Ai ) = Cost function.
▶ Key condition: Either Pi (Yi )Yi is strictly concave in Yi , or

C (·) is strictly convex in Yi .
▶ The profit function is strictly concave.

▶ Example: Decreasing Returns to Scale (DRS) even with
perfect competition: PYi is linear in Yi , but C (·) is strictly
convex due to DRS.

▶ Example: Oligopoly competition even with Constant
Returns to Scale (CRS): C (·) is linear, but Pi (Yi )Yi is
strictly concave in Yi if demand is downward sloping.



Why TFP Dispersion Is Possible in Equilibrium? [2]

▶ Equilibrium implies the marginal condition for optimal output:

MRi ≡
∂[P(Yi )Yi ]

∂Yi
=
∂C (Yi ,Ai )

∂Yi
≡ MCi

▶ If variable profit is strictly concave, this equilibrium can
support firms with different TFPs, Ai .

▶ It is not optimal for the firm with the highest TFP to provide
all the output in the industry.

▶ Firms with different TFPs (above a certain threshold value)
operate in the same market.



How Can a Firm Affect Its TFP?

▶ Human resources and managerial practices.

▶ Learning-by-doing.
▶ Organizational structure:

▶ Vertical integration vs outsourcing.

▶ Higher quality of labor and capital inputs.

▶ Adoption of new technologies.

▶ Investment in R&D.
▶ Innovation:

▶ Process innovation.
▶ Product innovation.
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